MATH702
Algebra
S1 Day 2015
Dept of Mathematics

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>4</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>4</td>
</tr>
<tr>
<td>Learning and Teaching Activities</td>
<td>4</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>5</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>6</td>
</tr>
</tbody>
</table>

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff

Unit Convenor
Steve Lack
steve.lack@mq.edu.au

Contact via steve.lack@mq.edu.au

Credit points

4

Prerequisites

- Admission to MRes

Corequisites

Co-badged status

Unit description

This unit provides an advanced introduction to key areas of research interest in modern algebra. It will centre around the theory and applications of modules over a ring. Modules are a common generalisation of the notions of vector space over a field, of abelian group, of group representation, and of square matrix. We will see how to extend some of the theory of these notions developed in undergraduate years to the setting of modules. An important recurring idea will be that of a structure theorem, such as the undergraduate-level result that every finitely-generated abelian group is a direct sum of cyclic groups. We shall see various structure theorems for the various algebraic notions studied, with an important example being the Wedderburn theorem for semi-simple rings. Applications to representation theory will be particularly emphasised.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Understanding logical arguments and recognising any gaps or faults in such arguments.
2. Solving problems, including: formulating a precise mathematical question from a "real world" problem; identifying and applying appropriate mathematical techniques.
3. Expressing yourself clearly and logically in writing.

http://unitguides.mq.edu.au/unit_offerings/46495/unit_guide/print
4. More broadly, you are expected to improve your generic skills in the following areas: literacy and numeracy, self-awareness and interpersonal skills, communications, critical analysis, problem solving and creative thinking.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>10%</td>
<td>weekly</td>
</tr>
<tr>
<td>Assignments</td>
<td>40%</td>
<td>TBA</td>
</tr>
<tr>
<td>Final Exam</td>
<td>50%</td>
<td>Examination period</td>
</tr>
</tbody>
</table>

Presentation

Due: **weekly**
Weighting: **10%**

Students will regularly be asked to present responses to tutorial-style questions orally in class.

This Assessment Task relates to the following Learning Outcomes:

- Understanding logical arguments and recognising any gaps or faults in such arguments.
- Solving problems, including: formulating a precise mathematical question from a "real world" problem; identifying and applying appropriate mathematical techniques.

Assignments

Due: **TBA**
Weighting: **40%**

Written solutions, generally involving both proof and calculation.

This Assessment Task relates to the following Learning Outcomes:

- Understanding logical arguments and recognising any gaps or faults in such arguments.
- Solving problems, including: formulating a precise mathematical question from a "real world" problem; identifying and applying appropriate mathematical techniques.
- Expressing yourself clearly and logically in writing.
- More broadly, you are expected to improve your generic skills in the following areas: literacy and numeracy, self-awareness and interpersonal skills, communications, critical analysis, problem solving and creative thinking.
Final Exam
Due: Examination period
Weighting: 50%

Take-home exam based on the semester's work, to be conducted in department.

This Assessment Task relates to the following Learning Outcomes:

- Understanding logical arguments and recognising any gaps or faults in such arguments.
- Solving problems, including: formulating a precise mathematical question from a "real world" problem; identifying and applying appropriate mathematical techniques.
- Expressing yourself clearly and logically in writing.
- More broadly, you are expected to improve your generic skills in the following areas: literacy and numeracy, self-awareness and interpersonal skills, communications, critical analysis, problem solving and creative thinking.

Delivery and Resources

Classes
You should attend the two-hour lecture each week.

Required and recommended texts and/or materials
There is no required text for this unit. Supplementary notes will be distributed from time to time.

Technology used and required
You are expected to have access to an internet enabled computer with a web browser and Adobe Reader software. Several areas of the university provide wireless access for portable computers. There are computers for student use in the Library and in the Numeracy Centre (C5A 255). Difficulties with your home computer or internet connection do not constitute a reasonable excuse for lateness of, or failure to submit, assessment tasks.

Unit Schedule
Weekly lecture: Wednesdays 10-12.

Learning and Teaching Activities

Lecture
2 hours per week

Revision questions
Given out after each lecture
Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html
Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct
Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results
Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au
Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://informatics.mq.edu.au/help/. When using the University's IT, you must adhere to the Acceptable Use Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Solving problems, including: formulating a precise mathematical question from a "real world" problem; identifying and applying appropriate mathematical techniques.
- More broadly, you are expected to improve your generic skills in the following areas: literacy and numeracy, self-awareness and interpersonal skills, communications, critical analysis, problem solving and creative thinking.

Assessment tasks

- Presentation
- Assignments
- Final Exam

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:
Learning outcome

• More broadly, you are expected to improve your generic skills in the following areas:
literacy and numeracy, self-awareness and interpersonal skills, communications, critical
analysis, problem solving and creative thinking.

Assessment tasks

• Assignments
• Final Exam

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of
knowledge, scholarly understanding, and specific subject content knowledge in their chosen
fields.

This graduate capability is supported by:

Learning outcomes

• Understanding logical arguments and recognising any gaps or faults in such arguments.
• Solving problems, including: formulating a precise mathematical question from a "real
world" problem; identifying and applying appropriate mathematical techniques.
• More broadly, you are expected to improve your generic skills in the following areas:
literacy and numeracy, self-awareness and interpersonal skills, communications, critical
analysis, problem solving and creative thinking.

Assessment tasks

• Presentation
• Assignments
• Final Exam

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience,
of applying higher level critical thinking skills, and of integrating and synthesising learning and
knowledge from a range of sources and environments. A characteristic of this form of thinking is
the generation of new, professionally oriented knowledge through personal or group-based
critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

• Understanding logical arguments and recognising any gaps or faults in such arguments.
More broadly, you are expected to improve your generic skills in the following areas: literacy and numeracy, self-awareness and interpersonal skills, communications, critical analysis, problem solving and creative thinking.

Assessment tasks

- Presentation
- Assignments
- Final Exam

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcome

- Expressing yourself clearly and logically in writing.

Assessment tasks

- Assignments
- Final Exam