PHYS149

Physics for Life Sciences

S1 Day 2015

Dept of Physics and Astronomy

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>4</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>7</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>9</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>14</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>16</td>
</tr>
<tr>
<td>Changes from Previous Offering</td>
<td>22</td>
</tr>
</tbody>
</table>

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff

Unit Convenor
Alex Fuerbach
alex.fuerbach@mq.edu.au
Contact via alex.fuerbach@mq.edu.au
E6B 2.608
By appointment

Lecturer
Rich Mildren
rich.mildren@mq.edu.au
Contact via rich.mildren@mq.edu.au
E6B 2.606
By appointment

Laboratory Coordinator
Danny Cochran
danny.cochran@mq.edu.au
Contact via danny.cochran@mq.edu.au
E7B 122
During lab times

Rich Mildren
rich.mildren@mq.edu.au

Credit points
3

Prerequisites
(HSC Mathematics Band 4) or MATH130 or corequisite of (MATH132 or MATH135)

Corequisites

Co-badged status
Unit description
This unit develops a conceptual and quantitative approach to key physics topics including: waves, light and sound; electricity; forces and motion; and thermodynamics, with illustrations of these topics using biological or technological applications. It teaches students to apply their knowledge of science to solve problems; to think and reason logically and creatively; and to communicate effectively. The key role of modelling in understanding and describing the natural world is supported by a development of the basic techniques of physical measurements, data analysis and verification of models. Written communication skills for laboratory report writing, and problem-solving techniques, are emphasised throughout the unit.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes
1. Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).
2. Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
3. Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).
4. Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.
5. To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Assignments</td>
<td>20%</td>
<td>Weeks 2 - 12</td>
</tr>
<tr>
<td>Lab sessions</td>
<td>15%</td>
<td>Specified weeks</td>
</tr>
<tr>
<td>Mid-Semester Exam</td>
<td>20%</td>
<td>Monday, 20th April</td>
</tr>
<tr>
<td>Final examination</td>
<td>45%</td>
<td>As timetabled</td>
</tr>
</tbody>
</table>

Tutorial Assignments

Due: *Weeks 2 - 12*

Weighting: *20%*

Tutorials start in week 2. In each tutorial you will work with a tutor on selected problems that cover the lecture material of the previous week.

At some point during each tutorial (starting in week 3 until week 12), you will be asked to solve a slightly modified version of one of the problems from last week's tutorial. You will be asked to hand in your completed work which will be marked and returned to you for feedback. Each individual mark will contribute 2% to your total mark.

This Assessment Task relates to the following Learning Outcomes:

- Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).
- Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
- Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/
assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.

• To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.

Lab sessions

Due: Specified weeks
Weighting: 15%

You complete 8 weeks of laboratory work (3 hours per week) during the weeks specified in the ‘Delivery and Resources’ section. During these sessions, you gain an introduction to measurement techniques and equipment, and to data analysis and you also complete four specific experiments chosen from the list.

This Assessment Task relates to the following Learning Outcomes:

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of ‘thought experiments’ (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

• Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.

• Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).

• Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.
Mid-Semester Exam

Due: Monday, 20th April
Weighting: 20%

This will be a 1-hour closed-book exam that will be held during normal lecture times.

This Assessment Task relates to the following Learning Outcomes:

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of ‘thought experiments’ (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).
• Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
• Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).
• Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.

Final examination

Due: As timetabled
Weighting: 45%

This will be a 3-hour closed-book exam. You are expected to present yourself for the final examination at the time and place designated in the University examination timetable. The timetable will be available in draft form approximately eight weeks before the commencement of examinations and in final form approximately four weeks before the commencement of examinations.
The only exception to not sitting the examination at the designated time is because of documented illness or unavoidable disruption. In these circumstances you may wish to apply for Special Consideration (see 'Special Consideration' in this Guide).

This Assessment Task relates to the following Learning Outcomes:

- Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).
- Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
- Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.
- To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.

Delivery and Resources

Required Text

Laboratory Manual for PHYS149. Students must have this manual when completing practical work.

Teaching Strategy

PHYS149 consists of lectures, tutorials, laboratory sessions and assessment including assignments, laboratory reports and formal exams.

You are expected to attend all lectures. Any announcements relating to the course are made during lectures. If there are unavoidable timetable clashes, you can listen to the echo recording of each lecture, accessed from the course site.
Attendance at tutorials is compulsory.

You should spend an average of 9 hours per week (for 18 weeks) studying the unit.

Laboratory (Lab) Sessions

The laboratory will operate in E7B.114, commencing week 1. Access to the laboratory at other times may be possible by arrangement. You must finish one experiment at a time, and each experiment is expected to require one 3-hour laboratory session.

The laboratory work is designed to introduce you to some of the basic skills and techniques that are used in experimental physical science, and forms an important component of your learning in PHYS149.

All your work must be recorded directly into your laboratory notebook. Your laboratory notebook will be assessed by one of the demonstrators at the end of each session. Your laboratory notebook stays with the laboratory throughout the semester. You will be assessed on both, the actual content of your report as well as on its style. Further details of the laboratory assessment will be outlined in the first session. Detailed instructions for writing a physics laboratory report will be posted on iLearn.

The laboratory component of the unit is compulsory and all experiments must be successfully completed to pass the unit overall. Only under exceptional circumstances will extra catch up sessions be organised; you are responsible for ensuring that you complete all experiments as required during your registered laboratory class.

You should have a scientific calculator for use during the laboratory sessions.

Attendance at laboratories is compulsory.

Lab Safety

Safe practices in the laboratory are to be strictly observed. You must wear enclosed footwear to the laboratory. This is required by State Occupational Health and Safety legislation. Our teaching laboratories can be closed down if we permit any breaches. No one wearing inadequate footwear will gain entry to the lab. Food and drink cannot be taken into the laboratory. Exclusion from a laboratory session for violation of these requirements will be treated as absence without legitimate cause.

Schedule of Lab Work

<table>
<thead>
<tr>
<th>Week</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to the lab (1 hour only)</td>
</tr>
<tr>
<td>2</td>
<td>Unit 1 - Week 1 Computer based graphing</td>
</tr>
<tr>
<td>3</td>
<td>Unit 1 - Week 2 Computer based graphing</td>
</tr>
<tr>
<td>4</td>
<td>Unit 3 – Digital Oscilloscopes</td>
</tr>
<tr>
<td>5</td>
<td>Unit 4 – DC circuits</td>
</tr>
</tbody>
</table>
Unit Schedule

Detailed Topic Outline

with a list of Chapters and Sections of Textbook covered in the Lectures

Introduction and Mathematical Concepts (Chapter 1)

Section 1.1 The nature of physics

Sections 1.2, 1.3 Units
Kinematics in One Dimension (Chapter 2)
Section 2.1 Displacement
Section 2.2 Speed and velocity
Section 2.3 Acceleration
Sections 2.4 - 2.5 Equations of kinematics for constant acceleration and applications
Section 2.6 Freely falling bodies
Section 2.7 Graphical analysis of velocity and acceleration

Forces and Newton’s Laws of Motion (Chapter 4)
Section 4.1 Concepts of force and mass
Section 4.2 Newton’s first law of motion
Sections 4.3 - 4.4 Newton's second law of motion
Section 4.5 Newton's third law of motion
Sections 4.6 – 4.9 Types of forces: gravitational force, frictional forces and normal force
Sections 4.11- 4.12 Applications of Newton’s laws of motion

Rotational Dynamics (Chapter 9)
Section 9.1 The Action of Forces and Torques on Rigid Objects
Section 9.2 Rigid Objects in Equilibrium

Work and Energy (Chapter 6)
Section 6.1 Work done by constant force
Section 6.2 Work-energy theorem and kinetic energy
Section 6.3 Gravitational potential energy
Section 6.4 Conservative and non-conservative forces
Section 6.5 Conservation of mechanical energy
Section 6.6 Non-conservative forces and the work-energy theorem
Section 6.7 Power
Section 6.8 Other forms of energy and the conservation of energy
Electricity. (Chapter 18)
Section 18.1 and 18.2 Introduction and charged objects
Section 18.6 Electric field

Electric potential. (Chapter 19)
Section 19.1. Potential energy
Section 19.2 Electric potential difference

Electric circuits. (Chapter 20)
Section 20.1 Electromotive force and current
Section 20.2 Ohm’s law
Section 20.3 Resistance and resistivity
Section 20.4 Electric power
Section 20.5 Alternating current

Electric circuits. (Chapter 20)
Section 20.6 Series wiring
Section 20.7 Parallel wiring
Section 20.8 Circuits partially in series and partially in parallel
Section 20.11 Measurement of current and voltage
Section 20.14 Safety and the physiological effects of current

Fluids. (Chapter 11)
Section 11.1 Mass density
Section 11.2 Pressure
Section 11.3 Pressure and depth in a static fluid
Section 11.4 Pressure gauges
Section 11.5 Pascal’s principle
Section 11.6 Archimedes’ Principle
Section 11.7 Fluids in motion
Section 11.8 Equation of continuity
Section 11.9 – 11.10 Bernoulli’s equation and applications

Heat. (Chapter 12)
Section 12.1- 12.2 Temperature scales
Section 12.3 Thermometers
Section 12.6 Heat and internal energy
Section 12.7 Heat and temperature change
Section 12.8 Heat and phase change

Heat transfer. (Chapter 13)
Section 13.1 Convection
Section 13.2 Conduction
Section 13.3 Radiation
Section 13.4 Applications

Thermodynamics. (Chapter 15)
Section 15.1 Thermodynamic systems and surroundings
Section 15.2 Zeroth law of thermodynamics
Section 15.3 First law of thermodynamics
Section 15.7 Second law of thermodynamics
Section 15.11- 15.12 Entropy and third law of thermodynamics

Waves and Sound. (Chapter 16)
Section 16.1 Nature of waves
Section 16.2 Periodic waves
Section 16.3 Speed of a wave on a string
Section 16.4 Mathematical description of a wave
Section 16.5 Nature of sound
Section 16.6 Speed of sound
Sections 16.7 – 16.8 Sound intensity and dB
Section 16.9 Doppler effect
Section 16.10 Applications of sound in medicine

Superposition and Interference. (Chapter 17)

Section 17.1 Principle of linear superposition
Section 17.2 Constructive and destructive interference of sound waves
Section 17.3 Diffraction
Section 17.4 Beats
Section 17.5 Transverse standing waves
Section 17.6 Longitudinal standing waves

Electromagnetic waves. (Chapter 24)

Section 24.1 Nature of electromagnetic waves
Section 24.2 Electromagnetic spectrum
Section 24.3 Speed of light
Section 24.5 Energy carried by electromagnetic waves
Section 24.6 Doppler effect and electromagnetic waves
Section 24.6 Polarization

Refraction of Light: Lenses and Optical Instruments. (Chapter 26)

Section 26.1 Index of refraction
Section 26.2 Snell’s law and refraction of light
Section 26.3 Total internal reflection
Section 26.4 Polarization and reflection and refraction of light
Section 26.5 Dispersion of light
Section 26.6 –26.7 Lenses and formation of images by lenses
Section 26.8 Thin lens equation and magnification equation
Section 26.9 Lenses in combination
Section 26.10 Human eye
Section 26.11 Angular magnification and magnifying glass
Section 26.12 Compound microscope

http://unitguides.mq.edu.au/unit_offerings/47350/unit_guide/print 13
Section 26.14 Lens aberrations

Interference and Wave Nature of Light. (Chapter 27)
Section 27.1 Principle of linear superposition
Section 27.2 Young’s double slit experiment
Section 27.5 Diffraction
Section 27.6 Resolving power

Nature of the Atom. (Chapter 30)
Section 30.2 Line spectra
Section 30.3 Bohr model of the hydrogen atom
Section 30.6 Pauli exclusion principle and the periodic table of the elements
Section 30.7 X-rays

Nuclear Physics and Radioactivity. (Chapter 31)
Section 31.1 Nuclear structure
Section 31.2 Strong nuclear force and stability of the nucleus
Section 31.3 Mass defect of the nucleus and nuclear binding energy
Sections 31.4 and 31.6 Radioactivity and radioactive decay

Ionizing Radiation. Elementary Particles (Chapter 32)
Section 32.1 Biological effects of ionizing radiation

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the [Learning and Teaching Category](http://www.mq.edu.au/policy/docs/disruption_studies/policy.html) of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in *iLearn*, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in [eStudent](https://students.mq.edu.au/support/student_conduct/). For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the [Disability Service](http://www.mq.edu.au/services/disability) who can provide appropriate help with any issues that arise during their studies.

IT Help

When using the University's IT, you must adhere to the [Acceptable Use Policy](http://informatics.mq.edu.au/help/). The policy applies to all who connect to the MQ network including students.
Graduate Capabilities

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
- To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.

Assessment tasks

- Tutorial Assignments
- Lab sessions
- Mid-Semester Exam
- Final examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of ‘thought experiments’
(conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

• Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.

• Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).

Assessment tasks

• Tutorial Assignments
• Lab sessions
• Mid-Semester Exam
• Final examination

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

• Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by
topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.

- Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).

Assessment tasks
- Tutorial Assignments
- Mid-Semester Exam
- Final examination

Effective Communication
We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes
- Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).
- Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.
- To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.
Assessment task

• Lab sessions

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcome

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

Assessment task

• Final examination

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcome

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

Assessment task

• Lab sessions

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement.
They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
- To be responsible, critically reflective, self-directed and motivated learners. The nature of the tutorials, tutorial problems, assessment tasks and examination are all designed to develop students as self-learners who know their own learning styles.

Assessment tasks

- Tutorial Assignments
- Lab sessions

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).
- Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by
topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.

• Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).

• Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.

Assessment tasks

• Tutorial Assignments
• Lab sessions
• Mid-Semester Exam
• Final examination

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Knowledge of fundamental physics concepts, principles and theories. Students learn concepts and show their understanding by predicting outcomes of 'thought experiments' (conceptual answers) and calculating outcomes in specific physical situations (numerical answers).

• Applying of physics principles to understand the causes of problems, devise strategies to solve them and test possible solutions. Students are counselled that developing problem-solving strategies is the hallmark of a physicist. They take the first steps in building these skills. The structure of the problems from the text - being categorised by topic - is a stepping stone to being able to determine the concepts relevant to solving problems without this support.
• Using a range of measurement and data analysis tools to collect data with appropriate precision and carry out subsequent analysis with due regard to the uncertainties. The unit includes a comprehensive laboratory component to build these capabilities, in which students perform physics experiments. This involves understanding the physics of the problem, performing the measurements (with due regard to uncertainties), and analysing their results (including computer-based processing and presentation).

• Using the tools, methodologies, language, conventions of physics to test and communicate ideas and explanations. Topic content, laboratories and tutorial/assignment problems all provide opportunities to build an understanding of how to test and communicate physics ideas and explanations.

Assessment tasks

• Tutorial Assignments
• Lab sessions
• Mid-Semester Exam
• Final examination

Changes from Previous Offering

The old textbook that was out of print has been replaced by a new textbook (Physics 9e) this year.

A mid-semester exam has been introduced with the aim of reducing the weighting of the final exam and to help with preparing for the final exam.

The "Special lab report" is no longer part of the assessment.