ENGG300
Engineering Project Practices
S1 Day 2015
Dept of Engineering

Contents

General Information 2
Learning Outcomes 2
Assessment Tasks 3
Delivery and Resources 6
Unit Schedule 7
Policies and Procedures 7
Graduate Capabilities 8
Changes from Previous Offering 13

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit Convenor
Michael Heimlich
michael.heimlich@mq.edu.au
Contact via michael.heimlich@mq.edu.au
E6B 150
T & W 9-10am

Unit Convenor
Stuart Jackson
stuart.jackson@mq.edu.au

Credit points
3

Prerequisites
(39cp including ENGG200(P)) and (admission to BE or BEBA or BEBBA or BEBCom or BEBSc)

Corequisites

Co-badge status

Unit description
This unit develops skills required for professional practice in engineering, particularly self-learning, collaborative problem solving, and communication. The vehicles for skills development include a research project, written report and oral presentation.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Demonstrate a working knowledge of the engineering process and the associated documents
2. Understand the role and produce the standard engineering documentation work products as part of the execution of a project of some significance
3. Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to
properly develop and execute the engineering process and produce the associated
documentation

4. Assess and incorporate feedback as part of continuous improvement in the context of
the broader engineering process

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Document</td>
<td>15%</td>
<td>week 3</td>
</tr>
<tr>
<td>Requirements Review</td>
<td>10%</td>
<td>week 7</td>
</tr>
<tr>
<td>Design Document</td>
<td>20%</td>
<td>week 10</td>
</tr>
<tr>
<td>Proposal and Project Plan</td>
<td>30%</td>
<td>final exam period</td>
</tr>
<tr>
<td>Mixed/Prac Reports</td>
<td>10%</td>
<td>various</td>
</tr>
<tr>
<td>Self-management</td>
<td>10%</td>
<td>final exam period</td>
</tr>
<tr>
<td>Oral Report</td>
<td>5%</td>
<td>TBD - 2nd half of S1</td>
</tr>
</tbody>
</table>

Requirements Document

Due: **week 3**
Weighting: **15%**

individual written report on background and requirements

This Assessment Task relates to the following Learning Outcomes:
- Demonstrate a working knowledge of the engineering process and the associated
documents
- Understand the role and produce the standard engineering documentation work products
 as part of the execution of a project of some significance

Requirements Review

Due: **week 7**
Weighting: **10%**

Group report with iterated Requirements Document submitted to another team for peer review. The peer review must be critical and based on a proper literature review. The peer review is submitted by the team.
This Assessment Task relates to the following Learning Outcomes:

- Demonstrate a working knowledge of the engineering process and the associated documents
- Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Design Document

Due: week 10
Weighting: 20%

individual written report with design and design alternatives

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate a working knowledge of the engineering process and the associated documents
- Understand the role and produce the standard engineering documentation work products as part of the execution of a project of some significance
- Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation
- Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Proposal and Project Plan

Due: final exam period
Weighting: 30%

Combine all your reports, plus those from your team, to create a proposal and project plan which convinces the unit conveners that you should be awarded the contract to work on the originally proposed problem

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate a working knowledge of the engineering process and the associated documents
- Understand the role and produce the standard engineering documentation work products as part of the execution of a project of some significance
• Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation
• Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Mixed/Prac Reports
Due: various
Weighting: 10%
approximately 5 reports

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate a working knowledge of the engineering process and the associated documents
• Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Self-management
Due: final exam period
Weighting: 10%

notes, thoughts, gripes, insights in your notebook. This includes all work underpinning your practicals/tutorials as well as background work for your major reports.

This mark also includes a component for your timely submission of various assessments, as this is a bit of a self-paced unit with regard to lectures and tutes/pracs.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate a working knowledge of the engineering process and the associated documents
• Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Oral Report
Due: TBD - 2nd half of S1
Weighting: 5%
Your team. 5 minutes, 5 slides. Give a unit convener your "elevator pitch"

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate a working knowledge of the engineering process and the associated documents
- Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Delivery and Resources

Purpose: The purpose of this unit is to practice the documentation and essential tasks that you will need to do to meet your deliverables for ENGG411. The lectures address the basic steps in the engineering process, what should be considered in these steps, and how each step is done. The reports all you to practice these steps. The mixed/prac sessions give you additional practice in some of the finer details executing these steps.

Approach to Assessment: The learning outcomes that you need to demonstrate in this unit are designed to prepare you to produce the various reports needed for ENGG411. In this unit, you are encouraged to make mistakes in the early reports, get your marked feedback, and show progress improvement to where you can demonstrate a high level of competency for all the learning outcomes by the Final Report. It is not necessary to get all the reports "right" to get a good mark in this unit; you must attempt all the assessments and you must show steady improvement by incorporating your marked feedback.

Delivery: This unit is a self-paced unit and is delivered on-line. You will be required to watch all the lectures available via iLearn. If you find a topic particularly challenging, you can visit the lecturer/convener during consultation hours or you can meet with the tutors during the scheduled prac/tute sessions. It is up to you to seek out the personnel delivering this unit if you feel that you are having trouble. You are required to keep an on-line blog/logbook within iLearn for this unit.

You will execute in project teams of 4 which should contain a healthy balance of majors--Mechanical, Electrical, Software, etc. If you all have the same major, this will put you at a handicap. If you would like to form your own group of 4 students, please contact Prof. Mike Heimlich no later than the end of week 2 or you will be assigned to a group. You will need to decompose the problem from the Requirements Document into 4 major parts, with each part taken by 1 students. Your individual design documents should be shared among all the members of your group after it has been marked for the Proposal & Project Plan, which requires inclusion of material from all 4 design documents.

Resources: The convener is available for consultation either via iLearn forums/chat or during consultation hours. Tutors are available during the scheduled tute/prac time. You are encouraged to approach any of the teaching staff for this unit if you are having problems understanding any component of the unit. Templates are provided for the 4 major reports you
must deliver. You do not have to use the templates for the various documents. The use of\LaTeX{} is encouraged.

All of the resources are available on iLearn. The iLearn site for this unit is somewhat difficult to navigate. PLEASE SEE THE TEACHING STAFF IF YOU CANNOT FIND SOMETHING ON ILEARN.

The goal of this unit is for you to not only learn how to the engineering process works and how to execute it, but to demonstrate this by preparing the appropriate documentation. The teaching staff are available to help you with this BUT it is up to you to take the initiative to use us as a resource.

Unit Schedule

See iLearn and Assessment Tasks (above).

This unit is largely self-paced. Some of the practicals will have a drop-dead date for your submission.

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](http://mq.edu.au/policy/docs/). Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your
Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:
Learning outcomes

• Demonstrate a working knowledge of the engineering process and the associated documents
• Understand the role and produce the standard engineering documentation work products as part of the execution of a project of some significance
• Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Assessment tasks

• Requirements Document
• Requirements Review
• Design Document
• Proposal and Project Plan
• Mixed/Prac Reports

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

• Demonstrate a working knowledge of the engineering process and the associated documents
• Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Assessment tasks

• Requirements Document
• Requirements Review
• Design Document
• Proposal and Project Plan
Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Demonstrate a working knowledge of the engineering process and the associated documents
- Understand the role and produce the standard engineering documentation work products as part of the execution of a project of some significance
- Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation
- Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Assessment tasks

- Requirements Document
- Requirements Review
- Design Document
- Proposal and Project Plan
- Mixed/Prac Reports
- Self-management
- Oral Report

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:
Learning outcome

- Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Assessment tasks

- Requirements Review
- Proposal and Project Plan
- Mixed/Prac Reports
- Self-management
- Oral Report

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Demonstrate a working knowledge of the engineering process and the associated documents
- Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Assessment tasks

- Requirements Document
- Requirements Review
- Design Document
- Proposal and Project Plan
- Mixed/Prac Reports

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.
This graduate capability is supported by:

Learning outcome

- Use basic, standard engineering practices of problem decomposition, system-level modelling, model refinement, manufacturing costing, and background research to properly develop and execute the engineering process and produce the associated documentation

Assessment tasks

- Requirements Document
- Requirements Review
- Design Document
- Proposal and Project Plan
- Mixed/Prac Reports

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Assessment task

- Proposal and Project Plan

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Assessment task

- Proposal and Project Plan

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships...
with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcome

- Assess and incorporate feedback as part of continuous improvement in the context of the broader engineering process

Assessment tasks

- Requirements Review
- Design Document
- Proposal and Project Plan
- Mixed/Prac Reports
- Self-management

Changes from Previous Offering

The assessments have been modified to reflect a larger cohort and to incorporate creating the necessary continuum in the ENGG units to support Engineers Australia Stage 1 Competencies.

The emphasis on peer assessment and self-management have been increased.

The number of major assignments has decreased.