COMP343
Cryptography and Information Security
S1 Day 2015
Dept of Computing

Contents

General Information 2
Learning Outcomes 2
Assessment Tasks 3
Delivery and Resources 5
Unit Schedule 6
Learning and Teaching Activities 8
Policies and Procedures 8
Graduate Capabilities 9
Grading Standards 16

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Convenor, lecturer
Les Bell
les.bell@mq.edu.au
Contact via By email
Available for the hour after Wednesday lectures; other times by appointment.

Workshops Supervisor
Byungho Min
byungho.min@mq.edu.au
Contact via X. 6342
E6A 346

Credit points
3

Prerequisites
39cp and (COMP125(P) or COMP165(P)) and (DMTH137(P) or MATH237(P) or DMTH237(P))

Corequisites

Co-badged status
COMP343 / ITEC643

Unit description
This unit provides an introduction to modern cryptography and information security. First, some cryptographic primitives, such as private key and public key ciphers, hash functions and digital signatures, are introduced. Then, some security technologies are discussed to illustrate how basic cryptographic primitives are concretely used in real life applications. Various attacks on the cryptographic schemes and protocols are also discussed.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Demonstrate an understanding of the principles and concepts of cryptography and information security
2. Apply existing security technologies to preserve security properties of information
3. Apply security principles in the development of applications and systems
4. Relate information security to enterprise requirements and activities

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial Tasks</td>
<td>10%</td>
<td>Weekly</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>15%</td>
<td>Week 7</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>15%</td>
<td>Week 12</td>
</tr>
<tr>
<td>Mid Semester Test</td>
<td>15%</td>
<td>Week 6</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45%</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Tutorial Tasks

Due: **Weekly**

Weighting: **10%**

Each week, a set of exercises will be available online. Some require written submissions, while some are multiple choice. Your solutions should be submitted electronically via iLearn before the deadline specified in the text.

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate an understanding of the principles and concepts of cryptography and information security
- Apply existing security technologies to preserve security properties of information
- Apply security principles in the development of applications and systems
- Relate information security to enterprise requirements and activities

Assignment 1

Due: **Week 7**

Weighting: **15%**

Implementation of a cryptoprimitive and test program. The assignment is to be submitted via iLearn. Late submissions attract no marks.

This Assessment Task relates to the following Learning Outcomes:
Demonstrate an understanding of the principles and concepts of cryptography and information security

Apply security principles in the development of applications and systems

Assignment 2
Due: Week 12
Weighting: 15%

Security Evaluation of a System or Product. The assignment is to be submitted via iLearn. Late submissions attract no marks.

This Assessment Task relates to the following Learning Outcomes:

• Apply existing security technologies to preserve security properties of information
• Relate information security to enterprise requirements and activities

Mid Semester Test
Due: Week 6
Weighting: 15%

A 50 minutes long written examination worth 15% that will be held in week 6 during class time. This will test your understanding of material covered in weeks 1 to 6. The mid-semester test has the same structure as the final examination. The feedback received will allow you to be better prepared for the final examination.

This Assessment Task relates to the following Learning Outcomes:

• Demonstrate an understanding of the principles and concepts of cryptography and information security
• Apply security principles in the development of applications and systems

Final Examination
Due: TBA
Weighting: 45%

The final examination is designed to test your understanding of basic concepts of modern Cryptography and Information Security. Regarding the examination process, note that:

• you must attend all required classes and submit all required assessments, otherwise the Executive Dean of the Faculty or delegated authority has the power to refuse permission to attend the final examination
• the University Examination period for Mid-Year 2015 is from Tuesday 9th June to Friday 26th June 2015
• you are expected to present yourself for examination at the time and place designated in the University Examination Timetable
• the timetable will be available in Draft form approximately eight weeks before the commencement of the examinations and in Final form approximately four weeks before the commencement of examinations
• no early examinations for individuals or groups of students will be set. All students are expected to ensure that they are available until the end of the teaching semester, that is the final day of the official examination period
• the only exception to not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these circumstances you may wish to notify the university of your circumstances, as detailed in the Disruption to Studies Policy.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate an understanding of the principles and concepts of cryptography and information security
• Apply existing security technologies to preserve security properties of information
• Apply security principles in the development of applications and systems
• Relate information security to enterprise requirements and activities

Delivery and Resources

CLASSES
Each week you should complete any assigned readings and review the lecture slides in order to prepare for the lecture. There are two hours of lectures on Wednesday mornings, and a third hour on Thursdays at lunch time.

There are two practical workshops, on Mondays and Fridays, which use hands-on exercises to introduce and reinforce concepts related to the lecture content; you should have chosen a practical on enrollment. You will find it helpful to read the workshop instructions before attending - that way, you can get to work quickly!

For details of days, times and rooms consult the timetables webpage.

Note that Practicals commence in week 1.

You should have selected a practical at enrollment.

Please note that you will be required to submit work every week. Failure to do so may result in you failing the unit or being excluded from the exam.
DISCUSSION BOARDS
This unit makes use of discussion boards hosted within iLearn. Please post questions there; they are monitored by the staff on the unit.

REQUIRED AND RECOMMENDED TEXTS AND/OR MATERIALS
Required readings for this unit:

Recommended readings for this unit:

- **NIST SP 800** documents available from http://csrc.nist.gov/publications/PubsSPs.html
- **IETF RFC’s** available from http://www.rfc-editor.org

TECHNOLOGY USED AND REQUIRED

iLearn

iLearn is a Learning Management System that gives you access to lecture slides, lecture recordings, forums, assessment tasks, etc.

Echo 360 (formerly known as iLecture)

Digital recordings of lectures are available. Read these instructions for details.

Technology Used

Java programming language and GP/PARI, GnuPG, TrueCrypt, Thunderbird, OpenSSH, PuTTY.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to cryptography, information theory, classical ciphers up to Enigma</td>
<td>Lecture Slides, HAC Chapter 1.1, 2.1-2.3</td>
</tr>
<tr>
<td>Unit</td>
<td>Topic</td>
<td>Lecture Slides, Notes/Investigation Report</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Secret-key (Symmetric) Cryptography - Principles, DES, Attacks on DES</td>
<td>HAC 7.3, 7.4, 2.4 - 2.6</td>
</tr>
<tr>
<td>3</td>
<td>Secret-Key (Symmetric) Cryptography - Other block ciphers, AES, Stream Ciphers, Sources of Randomness</td>
<td>HAC 6, 5.1,</td>
</tr>
<tr>
<td>4</td>
<td>Cryptographic Hash Functions and Constructions</td>
<td>HAC 9</td>
</tr>
<tr>
<td>5</td>
<td>Public Key Cryptography - RSA, DSA, El Gamal</td>
<td>HAC 8</td>
</tr>
<tr>
<td>6</td>
<td>Public Key Cryptography - Attacks on RSA, Elliptic Curve Cryptography, Mid-term test</td>
<td>HAC 8, 11</td>
</tr>
<tr>
<td>7</td>
<td>Introduction to infosec, encrypted files and filesystems, block cipher modes</td>
<td>Verizon Data Breach Investigation Report</td>
</tr>
<tr>
<td>8</td>
<td>Authentication, protocols, signatures</td>
<td>SE Chapters 3, 5, 15</td>
</tr>
<tr>
<td>9</td>
<td>Encryption for network communications - SSL, SSH, PGP</td>
<td>Notes, SE Chapter 20</td>
</tr>
<tr>
<td>10</td>
<td>Access control - discretionary access control in UNIX and Windows, mandatory access control and trusted systems, security models for applications</td>
<td>Notes, SE Chapters 4, 8, 9</td>
</tr>
<tr>
<td>11</td>
<td>Information security, risk management, software security, forensics and incident investigation</td>
<td>Notes, SE Chapter 25</td>
</tr>
<tr>
<td>12</td>
<td>Zero-knowledge Proofs, Anonymity, Blind Signatures, Digital Cash and Voting</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Revision and exam preparation</td>
<td></td>
</tr>
</tbody>
</table>
Learning and Teaching Activities

Lectures
The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.

Tutorials
The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students' knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.

Practicals
The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.

Readings
Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html
Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.
Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://informatics.mq.edu.au/help/.

When using the University's IT, you must adhere to the Acceptable Use Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where
relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Demonstrate an understanding of the principles and concepts of cryptography and information security
- Apply existing security technologies to preserve security properties of information
- Apply security principles in the development of applications and systems
- Relate information security to enterprise requirements and activities

Assessment tasks

- Tutorial Tasks
- Assignment 1
- Assignment 2
- Mid Semester Test
- Final Examination

Learning and teaching activities

- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students’ knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.
- The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.
- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.
Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Demonstrate an understanding of the principles and concepts of cryptography and information security
- Apply existing security technologies to preserve security properties of information
- Apply security principles in the development of applications and systems
- Relate information security to enterprise requirements and activities

Assessment tasks

- Tutorial Tasks
- Assignment 1
- Assignment 2
- Mid Semester Test
- Final Examination

Learning and teaching activities

- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students' knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.
- The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.
- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half
of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- Demonstrate an understanding of the principles and concepts of cryptography and information security
- Apply existing security technologies to preserve security properties of information
- Apply security principles in the development of applications and systems
- Relate information security to enterprise requirements and activities

Assessment tasks

- Tutorial Tasks
- Assignment 1
- Assignment 2
- Mid Semester Test
- Final Examination

Learning and teaching activities

- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students’ knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.
- The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.
- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings
and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Apply security principles in the development of applications and systems
- Relate information security to enterprise requirements and activities

Assessment tasks

- Tutorial Tasks
- Assignment 1
- Assignment 2
- Mid Semester Test
- Final Examination

Learning and teaching activities

- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students’ knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.
- The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.
Engaged and Ethical Local and Global citizens
As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning and teaching activities
- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Capable of Professional and Personal Judgement and Initiative
We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning and teaching activities
- The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
- The practicals provide opportunities for hands-on learning in three primary areas: low-level programming skills, the number theory which underlies public-key cryptography and the practical application of security technologies such as file and disk encryption as well as the exchange of signed and encrypted emails.
- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings
and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Demonstrate an understanding of the principles and concepts of cryptography and information security
• Apply existing security technologies to preserve security properties of information
• Apply security principles in the development of applications and systems
• Relate information security to enterprise requirements and activities

Assessment tasks

• Tutorial Tasks
• Assignment 1
• Assignment 2
• Mid Semester Test
• Final Examination

Learning and teaching activities

• The lectures are the primary activity for this unit. While the lecture notes or slides will be available on iLearn, a lot of supporting detail and explanation is presented in the lectures, so skipping them is inadvisable.
• The tutorials are workshop-style interactive sessions which relate the theory from the lectures to the practical sessions which follow. The tutorials also provide material which may fill in gaps in students’ knowledge and establish some basic skills which will be useful in the practicals and Assignment 1.
• Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half
Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning and teaching activities

- Two required textbooks have been selected - both can be downloaded at no cost in PDF format. The Handbook of Applied Cryptography covers the mathematical underpinnings and details of modern cryptographic techniques, and will be used throughout the first half of the unit. Security Engineering deals with information security principles in general and the practical implementation of cryptosystems, and will be used throughout the second half of the unit.

Grading Standards

Four standards, namely Developing, Functional, Proficient, and Advanced, summarize as many different levels of achievement. Each standard is precisely defined to help students know what kind of performance is expected to deserve a certain mark. The standards corresponding to the learning outcomes of this unit are given below:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Developing</th>
<th>Functional</th>
<th>Proficient</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate an understanding of the principles and concepts of cryptography and information security</td>
<td>Distinguishes applicability of secret-key and public-key cryptography and hashing.</td>
<td>Understand basic concepts of secret-key and public-key cryptography and hashing. Correct formulation of basic cryptographic attacks.</td>
<td>Understand detailed concepts of secret-key and public-key cryptography and hashing. Ability to describe some cryptographic attacks in detail.</td>
<td>Mastery of cryptographic concepts; ability to describe all cryptographic attacks from unit in detail; ability to relate security parameters to complexity of cryptanalysis</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Apply existing security technologies to preserve security properties of information</td>
<td>Basic awareness of requirement for security</td>
<td>Can safeguard own data on disk, exchange files and emails securely with others, can compare and select authentication mechanisms</td>
<td>Can relate security requirements to design of applications and selection of security model and security services</td>
<td>Able able to set basic security policy, write standards and procedures for multiple users; understands security features/usability tradeoffs</td>
</tr>
<tr>
<td>Apply security principles in the development of applications and systems</td>
<td>Limited ability to implement a correct Java or C++ program following specifications</td>
<td>Correctly implement low-level functionality of a cryptoprimitive in Java or C++; implement a program following specifications; able to avoid most common security vulnerabilities in software development</td>
<td>Write efficient, well-documented Java or C++ code which implements a cryptoprimitive in Java or C++ and utilise this in a program which meets specifications.</td>
<td>Design well-architected, efficient and well-documented Java or C++ code to implement a cryptoprimitive, together with all required tests and demonstration program, following good design and test practice</td>
</tr>
</tbody>
</table>
Relate information security to enterprise requirements and activities | Ad-hoc approach to security based on personal experience only | Can relate information security function to business requirements and policy | Detailed understanding of vulnerabilities and controls; ability to respond to security incidents | Basic ability to manage information security in an enterprise

Grading

At the end of the semester, you will receive a grade that reflects your achievement in the unit

- **Fail (F)**: does not provide evidence of attainment of all learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; and incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.

- **Pass (P)**: provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; and communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

- **Credit (Cr)**: provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; plus communication of ideas fluently and clearly in terms of the conventions of the discipline.

- **Distinction (D)**: provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.

- **High Distinction (HD)**: provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or
problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application.

The relation between standards and grades can be loosely described as follows. If you consistently fail to reach any standard, you will fail the unit. If you consistently achieve

- Functional standards, you will get a P grade.
- Proficient standards, you will get a Cr/D grade.
- Advanced standards, you will get an HD grade.

More precisely, your final grade depends on your performance in each part of the assessment. For each task, you receive a mark that combines your standard of performance regarding each learning outcome assessed by this task. Then the different component marks are added up to determine your total mark out of 100. Your grade then depends on this total mark and your overall standards of performance.

In particular, in order to pass the unit, you must

- Total mark -- have a total mark of 50 or above; and
- Pass the combined mid semester test and final, i.e. obtain more than 30% out of 60% for those two assessment tasks

In order to obtain a higher grade than a Pass, you must fulfill the pass requirements and get an overall total mark in the range:

- 85-100 for HD
- 75-84 for D
- 65-74 for CR
- 50-64 for P