ACST851
Mathematics of Finance
S1 Day 2015
Dept of Applied Finance and Actuarial Studies

Contents

General Information .. 2
Learning Outcomes .. 2
General Assessment Information ... 3
Assessment Tasks .. 3
Delivery and Resources .. 5
Unit Schedule .. 6
Policies and Procedures ... 7
Graduate Capabilities .. 8
Changes from Previous Offering .. 9
Research and Practice, Global and Sustainability 9
Changes since First Published ... 10

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Convenor, Lecturer
Jim Farmer
jim.farmer@mq.edu.au
Contact via iLearn Dialog
E4A 616
Refer to the unit’s web site

Credit points
4

Prerequisites
ACST604 or (admission to MActPrac post 2014)

Corequisites

Co-badged status

Unit description
This unit provides a rigorous mathematical development of compound interest theory, using
calculus where appropriate. Topics include the force of interest and its relationship to interest
rates, inflation and capital gains tax, discrete and continuous term certain annuities, project
appraisal, loans, bonds, yield curves, matching and immunisation, pricing by the 'no arbitrage'
assumption, and forward rate agreements. Students are assumed to be able to use the basic
functionality of a spreadsheet package of their choice.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are

Learning Outcomes

1. Be able to demonstrate a deep understanding of compound interest theory.
2. Be able to demonstrate a deep understanding of the use of annuities.
3. Be able to demonstrate application of the above concepts to a range of practical
 problems in finance, including loans, analysis of investment projects, valuation of fixed
 interest securities, including the use of yield curves & use of the “no arbitrage” pricing
 method, forward contracts and immunisation theory.
4. Be able to use spreadsheets to efficiently solve computationally challenging problems.
General Assessment Information

Macquarie University uses the grades HD, D, Cr, P and F for grading the achievements of students in units of study. The meaning of each symbol is explained in the grading policy at http://www.mq.edu.au/policy/docs/grading/policy.html

A Standardised Numerical Grade (SNG) gives you an indication of how you have performed within the band for your descriptive grade. The SNG is not a mark, and you may not be able to work it out based on your raw examination and other assessment marks. Nor are you able to determine you are "one mark away" from a different grade.

When you work as an actuary or in any other profession, if you have a dangerous misunderstanding of a concept you may provide incorrect advice to a client, possibly with severe financial consequences for your client and yourself. However, if you realise that you don’t understand a concept you may refrain from giving advice on it until you have filled the gaps in your knowledge. That is, dangerous misunderstandings have more serious consequences than a recognised lack of knowledge.

The grading philosophy and marking scales adopted in this unit (and in many other university units) reflect this situation. Correct relevant statements earn marks. Statements revealing dangerous misunderstandings result in the deduction of marks. If your answers reveal that your misunderstandings are very severe or numerous, you might earn a negative mark for a question. If a part of a question is worth x marks, the smallest mark you can be allocated for that part is –x marks.

As an example, a minor error when keying numbers into your calculator is not usually regarded as a dangerous error provided the resulting incorrect answer is plausible. However, if a calculator error results in an obviously unreasonable answer, such as a present value of a future cash flow which exceeds the size of that future cash flow, or a level monthly loan repayment that exceeds the amount of the loan, and you fail to state that you realise this answer is unreasonable, this would be regarded as a dangerous misunderstanding.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Quizzes</td>
<td>20%</td>
<td>Various - See iLearn calendar</td>
</tr>
<tr>
<td>Assignment</td>
<td>10%</td>
<td>4:10pm 14 May 2015</td>
</tr>
<tr>
<td>Final Examination</td>
<td>70%</td>
<td>Standard Exam Period</td>
</tr>
</tbody>
</table>

Online Quizzes

Due: Various - See iLearn calendar
Weighting: 20%

You should complete these quizzes online. They are on this unit’s iLearn web site.
In answering the assessable quizzes, you may consult your notes or any textbooks you like, but you may not seek assistance from any humans in any way whatsoever. This includes seeking assistance in interpreting what the questions mean. You should not discuss any of the quiz questions with any of your classmates until after the deadline for submitting the quiz has passed, even if you have already submitted the quiz and so can no longer change your answers.

There are 7 quizzes covering topics 1 to 7.

Once you start a quiz, you have a maximum of 2 hours to complete it. The quiz for a topic becomes available at 11:59 pm on the Friday on which the tutorial on that topic occurs, and closes 96 hours (4 days) later. You may start the quiz anytime within that range, but if you start it within 2 hours of the end of that range then it still closes at the end of that range, meaning you get less than 2 hours to complete it.

Your total quiz mark is the sum of your marks from each quiz. Since the quizzes have different numbers of questions, this means the quizzes are not equally weighted in the assessment.

No extensions will be granted. Students who have not attempted the task prior to the deadline will be awarded a mark of 0 for the task, except for cases in which an application for special consideration is made and approved.

This Assessment Task relates to the following Learning Outcomes:

• Be able to demonstrate a deep understanding of compound interest theory.
• Be able to demonstrate a deep understanding of the use of annuities.
• Be able to demonstrate application of the above concepts to a range of practical problems in finance, including loans, analysis of investment projects, valuation of fixed interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.

Assignment
Due: 4:10 pm 14 May 2015
Weighting: 10%

The assignment must be submitted to the lecturer at any class up to 10:10 a.m. Friday 15 May.

No extensions will be granted. Students who have not submitted the task prior to the deadline will be awarded a mark of 0 for the task, except for cases in which an application for special consideration is made and approved.

This Assessment Task relates to the following Learning Outcomes:

• Be able to demonstrate a deep understanding of compound interest theory.
• Be able to demonstrate application of the above concepts to a range of practical problems in finance, including loans, analysis of investment projects, valuation of fixed interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.
interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.

• Be able to use spreadsheets to efficiently solve computationally challenging problems.

Final Examination

Due: Standard Exam Period
Weighting: 70%

To be eligible for a passing grade in this unit a pass is required in the final examination.

Students are permitted to use non-programmable calculators with no text-retrieval capacity.

The Macquarie University examination policy details the principles and conduct of examinations at the University. The policy is available at: http://www.mq.edu.au/policy/docs/examination/policy.htm

In the exam, you are required to write your answers on the ruled (right hand) pages of the answer booklet provided. Anything written on the unruled (left hand) pages will not be marked.

This Assessment Task relates to the following Learning Outcomes:

• Be able to demonstrate a deep understanding of compound interest theory.
• Be able to demonstrate a deep understanding of the use of annuities.
• Be able to demonstrate application of the above concepts to a range of practical problems in finance, including loans, analysis of investment projects, valuation of fixed interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.

Delivery and Resources

Classes

There are 5 hours of face-to-face teaching per week consisting of 3 hours of lectures and 2 hours of tutorial.

Class times can be found at: http://www.timetables.mq.edu.au/

Required and Recommended Texts and/or Materials

No textbooks are prescribed for this unit. Detailed notes, exercises and solutions are available on the unit’s web site. The web site also contains a list of all textbooks we are aware of covering significant amounts of the material in this unit.

Technology Used and Required

You will require a calculator. For the final exam, you may only use non-programmable calculators which are not able to store text. You may find it useful to be able to construct spreadsheets to verify your solutions to tutorial exercises. You will also be required to use a spreadsheet for the assignment. We do not prescribe any particular brand of spreadsheet.
You require access to a computer to access material on the unit's iLearn web site.

Unit Web Site

The web site for this unit can be accessed at http://ilearn.mq.edu.au

Teaching and Learning Activities

This unit is taught via lectures and tutorials. However, a significant amount of the lecture time will be spent on attempting problems. The emphasis is on learning by doing.

Unit Schedule

Since students often seem to print this schedule, there is a more printer-friendly version available in the administration section of this unit’s iLearn web site.

<table>
<thead>
<tr>
<th>Week</th>
<th>Week Begins</th>
<th>Topics Covered in Lectures</th>
</tr>
</thead>
</table>
| 1 | 23 Feb | 0. Preliminaries. (Reading only)
 | | 1. Interest Rates – Discrete time scenarios |
| 2 | 2 March | 2. Inflation and Capital Gains Tax
 | | 3. Forces of Interest – Continuous time scenarios | |
| 3 | 9 March | 4. Level Annuities |
| 4 | 16 March | 5. Varying Annuities |
| 5 | 23 March | 6. Loans |
| 6 | 30 March | 7. Project Appraisal
 | | 31 March – Last day to drop units without charge |
| | | 2-week study break |
| 7 | 20 Apr | 8. Measuring Investment Performance
 | | 9. Investments and Industry Jargon (Reading only) |
| 8 | 27 Apr | 10. Bonds |
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Supplementary Exams

Further information regarding supplementary exams, including dates, is available here http://www.businessandeconomics.mq.edu.au/current_students/undergraduate/how_do_i/special_consideration
Student Support
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support
Students with a disability are encouraged to contact the [Disability Service](http://mq.edu.au/learningservices/disability_service) who can provide appropriate help with any issues that arise during their studies.

IT Help

When using the University’s IT, you must adhere to the [Acceptable Use Policy](http://mq.edu.au/learningservices/disability_service). The policy applies to all who connect to the MQ network including students.

Graduate Capabilities
PG - Discipline Knowledge and Skills
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes
- Be able to demonstrate a deep understanding of compound interest theory.
- Be able to demonstrate a deep understanding of the use of annuities.
- Be able to demonstrate application of the above concepts to a range of practical problems in finance, including loans, analysis of investment projects, valuation of fixed
interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.

Assessment tasks

- Online Quizzes
- Assignment
- Final Examination

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Be able to demonstrate a deep understanding of compound interest theory.
- Be able to demonstrate a deep understanding of the use of annuities.
- Be able to demonstrate application of the above concepts to a range of practical problems in finance, including loans, analysis of investment projects, valuation of fixed interest securities, including the use of yield curves & use of the “no arbitrage” pricing method, forward contracts and immunisation theory.

Assessment tasks

- Online Quizzes
- Assignment
- Final Examination

Changes from Previous Offering

There have been no significant changes to content since the previous offering.

Research and Practice, Global and Sustainability

Mathematics of finance has a long history. Most of the mathematical theory used in this unit was developed over a century ago. Hence the research we are using can be found in textbooks on mathematics of finance, rather than needing to source recent research papers.

The development of computers in the 1960s, cheap electronic calculators in the 1970s and spreadsheets in the 1980s revolutionised the subject of mathematics of finance. Before computers many maths of finance problems were conceptually simple but the sheer length of the calculations required made exact calculations expensive to implement, and many clever
approximate techniques were developed to work around this. Now, many approximate
techniques are not required, since computers can easily implement the lengthy calculations
required to apply the theory exactly. While a textbook from 50 years ago might contain many
concepts that are now irrelevant, it probably also contains most of the theory we still need for this
unit.

Computers did also lead to the development of new ideas in mathematics of finance, notably in
stochastic modelling. That new material mostly falls in the more advanced units ACST816 and
ACST817 rather than in this introductory unit.

While some topics in this unit mention Australian conventions and market features, the
mathematical concepts in this unit are independent of any legislative constraints and so do not
recognise national or planetary boundaries.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/02/2015</td>
<td>Due to a late change to a tutorial time, the availability times for the onlines quizzes and the deadline for the assignment have been changed.</td>
</tr>
</tbody>
</table>