CBMS785
Laboratory Skills for Molecular Science Research
S1 Day 2016
Dept of Chemistry & Biomolecular Sciences

Contents

General Information .. 2
Learning Outcomes ... 2
Assessment Tasks .. 3
Delivery and Resources 4
Unit Schedule ... 4
Policies and Procedures 5
Graduate Capabilities 6
Changes from Previous Offering 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

http://unitguides.mq.edu.au/unit_offerings/55747/unit_guide/print 1
General Information

Unit convenor and teaching staff
convenor
A/Prof. Bridget Mabbutt
na
Contact via iLearn site
E8C306
by appt

Bhumika Shah
bumika.shah@mq.edu.au

Credit points
4

Prerequisites
Admission to MRes

Corequisites

Co-badged status

Unit description
This unit will provide hands-on experience of several of the sophisticated technologies currently utilised in molecular science. Students will select a portfolio of techniques across chemistry, biochemistry, biophysics, genomics or microbiology, according to their discipline background and interest. Independent skills and technical competency in a minimum of three contemporary methodologies or instrumentation types will be developed through intensive practical sessions with Macquarie researchers. This is a skills-focused unit designed to practically enrich methods encountered from a more theoretical standpoint in other units.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes
1. Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
2. Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
3. Execute independent analytical and critical skills required for scientific experimentation and research design
4. Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1: Report</td>
<td>33%</td>
<td>April 1</td>
</tr>
<tr>
<td>Module 2: Report</td>
<td>33%</td>
<td>May 13</td>
</tr>
<tr>
<td>Module 3: Report</td>
<td>34%</td>
<td>June 10</td>
</tr>
</tbody>
</table>

Module 1: Report
Due: **April 1**
Weighting: **33%**

Report, Standard Operating Procedure (SOP) or skills evaluation; as appropriate

This Assessment Task relates to the following Learning Outcomes:
- Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
- Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
- Execute independent analytical and critical skills required for scientific experimentation and research design
- Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Module 2: Report
Due: **May 13**
Weighting: **33%**

Report, Standard Operating Procedure (SOP) or skills evaluation; as appropriate

This Assessment Task relates to the following Learning Outcomes:
- Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
• Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
• Execute independent analytical and critical skills required for scientific experimentation and research design
• Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Module 3: Report

Due: June 10
Weighting: 34%

Report, Standard Operating Procedure (SOP) or skills evaluation; as appropriate

This Assessment Task relates to the following Learning Outcomes:
• Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
• Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
• Execute independent analytical and critical skills required for scientific experimentation and research design
• Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Delivery and Resources

This unit will provide hands-on experience in advanced contemporary technologies/instrumentation currently used in molecular science. Students will select three techniques from a portfolio of training modules offered by skilled researchers within CBMS. Independent skills and technical competency will be developed through intensive small-group laboratory training.

Each module is of 4 weeks in duration (weeks 2-5; weeks 6-9; weeks 10-13). Scheduling of tasks will be dependent on instrument and staff availability.

Technologies Used and Required: Specialist scientific equipment, computers and software will be made available to you under supervision, but you will require your own laptop with basic software installed to prepare your reports and SOP documentation.

Unit Schedule

Unit activities will generally place each Friday, 9 am -1 pm. The Unit will be generally structured as follows:

Week 1: Unit introduction; meet with unit convenor.
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/
Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
- Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
- Execute independent analytical and critical skills required for scientific experimentation and research design
Assessment tasks

- Module 1: Report
- Module 2: Report
- Module 3: Report

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcomes

- Execute independent analytical and critical skills required for scientific experimentation and research design
- Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Assessment tasks

- Module 1: Report
- Module 2: Report
- Module 3: Report

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
- Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting

Assessment tasks

- Module 1: Report
- Module 2: Report
- Module 3: Report
PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Develop practice and procedural knowledge in a range of advanced methods utilised in contemporary molecular research
- Generate individual technical skills in sample handling and instrumentation relevant to the research (as distinct from classroom) setting
- Execute independent analytical and critical skills required for scientific experimentation and research design

Assessment tasks

- Module 1: Report
- Module 2: Report
- Module 3: Report

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcome

- Practice communication and written analysis concerning experimental data gathered from a range of research technologies

Assessment tasks

- Module 1: Report
- Module 2: Report
- Module 3: Report
Changes from Previous Offering

Organisation structure is unchanged from 2015, but specific training modules offered will differ according to staff availability and student's research interests.