General Information

Unit convenor and teaching staff
Kate Highfield
kate.highfield@mq.edu.au

Susan Busatto
susan.busatto@mq.edu.au

Credit points
3

Prerequisites
ECH335 or admission to GDipAdvStEc

Corequisites

Co-badged status

Unit description
This unit builds on the knowledge gained in previous units, further developing student's knowledge of the principles and practices of teaching and learning mathematics. Students explore a range of strategies for assessing children's mathematical understandings, and design and implement lesson sequences to enhance the growth of children's mathematical thinking. The integration of technology with mathematics and with other key learning areas, including differentiating curriculum to meet the diverse needs of learners, is also addressed.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Develop further understanding of the major theoretical and research directions and current issues in mathematics education.

2. Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.

3. Demonstrate knowledge of mathematical concepts and processes in the areas of data, measurement and working mathematically.
4. Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.

5. Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.

6. Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.

7. Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

General Assessment Information

IEC Assessment Presentation & Submission Guidelines

Please follow these guidelines when you submit each assignment:

- Please type all assignments using 12-point font and 1.5 spacing.
- All assessments must be submitted through turnitin in .pdf format for submission.
- Faculty assignment cover sheets are NOT required for this unit.

Draft Submissions & Turnitin Originality Reports

- Students may use Turnitin's Originality Report as a learning tool to improve their academic writing. This option is available in this unit for Assessment 2 only.
- Students are strongly encouraged to upload a draft copy of the first assessment to Turnitin at least one week prior to the due date to obtain an Originality Report.
- The Originality Report provides students with a similarity index that may indicate if plagiarism has occurred. Students will be able to make amendments to their drafts prior to their final submission on the due date.
- Generally, one Originality Report is generated every 24 hours up to the due date.
- Originality Reports will not be available for assessments 1 and 3.

When preparing your assignments, it is essential that you note the following:

- Students are responsible for ensuring that the assessment has been submitted through TURNITIN successfully.
- Students are responsible for the content that is submitted for the assessment and will be marked on what has been received.
Students retain a copy of all assignments before submission, and retain the copy until your final grade for the unit has been received.

Marks will be deducted if you submit your assessment late (refer to the 'late assessments' section below for more details).

No assessment will be accepted after the date that the assessment has been returned to other students.

If an assessment is considered to be below passing standard, another staff member on the unit will provide a second opinion. No failed assessment may be re-submitted.

There are changes to requirements for becoming a teacher in the primary school setting. From 2016 students will be required to complete a literacy and numeracy test prior to completing the final placement. Further information can be found: http://www.nswteachers.nsw.edu.au/future-returning-teachers/become-a-teacher/ literacy-and-numeracy-tests/ In response to this, in this unit students are expected to demonstrate a professional standard of English expression in all assessable work which includes correct spelling, punctuation and grammar. Students who fail to meet this criterion will receive a failing grade overall for the particular assessment. Students who are concerned about their literacy skills are strongly urged to seek support via the library http://www.mq.edu.au/on_campus/library/research/researching_your_assignment/#Study%20and%20Writing%20Skills and also assistance with study and writing skills: http://students.mq.edu.au/support/learning_skills

Late Assessments:

A deduction of 5% of the total possible mark allocated for that assessment would be made for each day or part day that the assessment is late, weekends counting as two days. For example, if an assessment is worth 20 marks and you submit it 2 days late, you will have 2 marks (2 x 5% of 20 marks) subtracted from your awarded mark.

Extensions:

In extenuating circumstances, students may apply to the unit coordinator for an extension to the assessment due date. Reasons for the extension need to be documented through the Disruption to Studies form accessible through ask.mq.edu.au under "Disruption" and supported (e.g., a Professional Authority Form must be used in the case of illness). Note that:

- Students MUST speak with the unit coordinator prior to submitting their request through https://ask.mq.edu.au
- Extensions will only be granted in receipt of the completed form submitted through ask.mq.edu.au plus supporting documentation.
- Emails are not appropriate means of extension requests.
It is essential that you plan ahead and organise your study time effectively. Poor time management is not grounds for an extension.

In the case of computer malfunction, a draft of your assignment may be requested. Please ensure that you print out a draft regularly, so that it is available for submission on request.

Extensions are usually not granted on the due date.

IEC Academic Honesty Guidelines:

All assignments should cite and provide full bibliographical details of all material that you have used to inform or support your ideas. At the Institute of Early Childhood, students are required to use the American Psychological Association (APA) referencing procedures. Full details about how to cite and reference correctly can be found in Perrin (2015) and in the IEC Academic Honesty Handbook.

Grades:

The final grade a student receives signifies their overall performance in meeting the learning outcomes for the unit. The number assigned to a grade (Standard Numerical Grade or SNG) reflects the extent to which student attainment matches the grade descriptors.

Your raw mark for the unit (i.e., the total of your marks for each assessment item) may not be the same as the SNG which you receive. Results may be scaled to ensure there is a degree of comparability across the university, so that units with the same past performances of their students should achieve similar results. The process of scaling does not change the order of marks among students. A student who receives a higher raw score mark than another will also receive a higher final scaled mark.

Grades will be awarded at the completion of the unit according to the following criteria.

HD High Distinction 85-100%

Provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application as appropriate to the discipline.

D Distinction 75-84%

Provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly online tasks</td>
<td>30%</td>
<td>weekly</td>
</tr>
<tr>
<td>Misconceptions in Mathematics</td>
<td>35%</td>
<td>Week 6 or at On Campus Day 2</td>
</tr>
<tr>
<td>Finding the M in STREAM.</td>
<td>35%</td>
<td>In class in week 13 OR Online</td>
</tr>
</tbody>
</table>

Weekly online tasks

Due: **weekly**
Weighting: **30%**

Each week students will respond to an online provocation, collating relevant research in response to the weekly concept. Here the goal is to linking research and practice and provide evidence of effective mathematics teaching and learning strategies to cater for diverse learners. Students will first complete their own post and then contribute to the Professional Learning Network (PLN) by responding to another student or other students. Three tasks, selected at random from the weekly postings, will be marked over semester.

Additional details including marking criteria will be provided on iLearn.

This Assessment Task relates to the following Learning Outcomes:

Cr Credit 65-74%

Provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; convincing argumentation with appropriate coherent justification; communication of ideas fluently and clearly in terms of the conventions of the discipline.

P Pass 50-64%

Provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

F Fail 0-49%

Does not provide evidence of attainment of learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.
• Develop further understanding of the major theoretical and research directions and current issues in mathematics education.

• Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.

• Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.

• Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.

• Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Misconceptions in Mathematics

Due: Week 6 or at On Campus Day 2
Weighting: 35%

In this assessment students identify three misconceptions that impact on teaching and learning in mathematics within Birth to Five contexts or in School Settings. Students then develop a pamphlet of information (2 pages) for each of the misconceptions. Each pamphlet should address key research literature and present resources and activities to address the misconception. Students will present their ideas to peers (peer mark /5) in class (internals) or at the on campus day (externals).

Additional details including marking criteria will be provided on iLearn.

This Assessment Task relates to the following Learning Outcomes:

• Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.

• Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.

• Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.

• Develop an awareness of the range of application and adaptive technologies available to support students with special needs.
Finding the M in STREAM.

Due: In class in week 13 OR Online

Weighting: 35%

Within this assessment students work collaboratively to develop a teaching resource to support Mathematics Learning in STREAM (Science, Technology, Reading, Engineering and Mathematics). Here, students will identify an example of quality literature that presents opportunities for learning in STREAM and then develop learning activities to focus on developing skills in mathematics. Students will present their work to peers online (externals) and in class (internals). The group component of this work is marked out of 15 and the individual component out of 20.

Additional details including marking criteria will be provided on iLearn.

This Assessment Task relates to the following Learning Outcomes:

- Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.
- Demonstrate knowledge of mathematical concepts and processes in the areas of data, measurement and working mathematically.
- Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.
- Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.
- Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Delivery and Resources

ECH431 integrates in-class learning tasks (or external equivalent), online activities, independent and group work. Within ECH431 students are encouraged to contribute to the Professional Learning Network within the unit through online posts and sharing work with peers in class.

Classes

Students within ECH431 required to attend classes as outlined by the unit schedule. It should be noted that classes are not conducted in all weeks of semester to enable preparation and engagement in group work. The timetable for internal classes can be found on the University web site at: https://timetables.mq.edu.au/2016/.

External students will attend 2 compulsory on campus days on the 11th and 12th of April.
Resources

This unit requires students to access online journals and research materials through the Macquarie University Library website. There are no set texts for this unit. Weekly readings are available via iLearn.

Unit Schedule

<table>
<thead>
<tr>
<th>Week Beginning</th>
<th>Weekly Topic</th>
<th>Tasks and Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introductions and Professional learning Networks:</td>
<td>Class Activity: NO internal classes. Online tasks for all students</td>
</tr>
<tr>
<td>February 29th</td>
<td></td>
<td>Readings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early Years Learning Framework. (2014). Retrieved from</td>
</tr>
<tr>
<td>Week 2</td>
<td>Mathematics: Technology and mathematics.</td>
<td>Class Activity: — online tasks for external students. Internal classes for internal students</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Readings:

OPTIONAL Reading

Week 3
March 14th

Mathematics: exploring student misconceptions and Working with Diverse Learners (a)

Class Activity: – online tasks for external students. Internal classes for internal students

Readings:

OPTIONAL reading

Week 4
March 21st

Working with Diverse Learners (b)

Class Activity: NO internal classes. Online tasks for all students

Readings:

There is an App for that: the tablet revolution?

Class Activity: NO internal classes. Online tasks for all students

Readings:

OPTIONAL Reading

Week 6
April 4th

Connected outcomes, STEM and STEAM

Class Activity: – Assessment 2 presentations (to a small group)

in class (externals present at on campus day 2).

Readings:

OPTIONAL Reading

Mid Semester Break

On campus 11th and 12th April (compulsory for external students)
| Week 7
April 25th	**Linking curriculum, mathematics across KLAs**	**Class Activity:** – online tasks for external students. Internal classes for internal students

Readings:

OPTIONAL Reading

Hurst, C. (2011) Engagement and Connection in Mathematical Learning [online]. *Prime Number*,26, 3, p. 3-6. ([available through MultiSearch on the Macquarie Library website](http://unitguides.mq.edu.au/unit_offerings/57719/unit_guide/print))
Week 8
May 2nd

Class Activity: – online tasks for external students. Internal classes for internal students

Readings:

Howard, P. & Perry, B. (2011) Aboriginal children as powerful mathematicians. In N. Harrison (Ed) *Teaching and Learning In Aboriginal Education*. p.130-146. *(available through iLearn from week 5)*

Optional Reading:

Week 9
May 9th

Class Activity: NO internal classes. Online tasks for all students

Readings:

Week 10, 11 & 12

ECHP421 Prac – no classes or online tasks in weeks 10, 11 and 12

<table>
<thead>
<tr>
<th>Week 13</th>
<th>Reflections and Implications</th>
<th>Class Activity: – Assessment 3 presentations in class (externals present online).</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 6th</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/
Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcome

- Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.

Assessment tasks

- Weekly online tasks
- Finding the M in STREAM.
Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcome

- Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.

Assessment tasks

- Weekly online tasks
- Finding the M in STREAM.

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcome

- Develop further understanding of the major theoretical and research directions and current issues in mathematics education.

Assessment task

- Weekly online tasks

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:
Learning outcome

• Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Assessment tasks

• Weekly online tasks
• Misconceptions in Mathematics
• Finding the M in STREAM.

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

• Develop further understanding of the major theoretical and research directions and current issues in mathematics education.
• Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.
• Demonstrate knowledge of mathematical concepts and processes in the areas of data, measurement and working mathematically.
• Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.
• Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Assessment tasks

• Weekly online tasks
• Misconceptions in Mathematics
• Finding the M in STREAM.
Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.
• Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.

Assessment tasks

• Weekly online tasks
• Misconceptions in Mathematics
• Finding the M in STREAM.

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

• Demonstrate research based knowledge of teaching and learning approaches to differentiating curriculum to meet the diverse needs of learners in the mathematics classroom.
• Demonstrate effective mathematics teaching and learning strategies for meeting the needs of indigenous students.
• Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.

Assessment tasks

• Weekly online tasks
• Misconceptions in Mathematics
Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.
- Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Assessment tasks

- Weekly online tasks
- Misconceptions in Mathematics
- Finding the M in STREAM.

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Design lesson sequences that enhance the growth of children’s mathematical thinking, reflect current issues in research and integrate other curriculum areas.
- Demonstrate knowledge of mathematical concepts and processes in the areas of data, measurement and working mathematically.
- Demonstrate a capacity to use appropriate software for student profiling and reporting, lesson preparation and general administrative tasks.
- Develop an awareness of the range of application and adaptive technologies available to support students with special needs.

Assessment tasks

- Weekly online tasks
• Misconceptions in Mathematics
• Finding the M in STREAM.