GEOS929
Geophysical Data Processing
S1 Day 2016
Dept of Earth and Planetary Sciences

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>5</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>5</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>7</td>
</tr>
</tbody>
</table>

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Mark Lackie
mark.lackie@mq.edu.au

Credit points
4

Prerequisites
Permission of Executive Dean of Faculty

Corequisites

Co-badged status

Unit description
This unit is intended primarily to introduce students to advanced techniques and exploration practice in geophysical processing and interpretation. Students utilise commercial geophysical packages to process and interpret geophysical data sets. The unit will be a more applied than theoretical offering with students learning to use a range of packages and interpretation techniques common in geophysical applications.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Students will be able to utilise geophysical software to solve geological problems
2. Students will acquire new computational skills
3. Students will be able to process raw geophysical data to best highlight geological information
4. Competence in accessing, using and synthesising appropriate information
5. Application of knowledge to solving problems and evaluating ideas and information
6. Capacity to present ideas clearly with supporting evidence
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment I</td>
<td>15%</td>
<td>See schedule</td>
</tr>
<tr>
<td>Assignment II</td>
<td>15%</td>
<td>See schedule</td>
</tr>
<tr>
<td>Assignment III</td>
<td>15%</td>
<td>See schedule</td>
</tr>
<tr>
<td>Assignment IV</td>
<td>10%</td>
<td>See Schedule</td>
</tr>
<tr>
<td>Assignment V</td>
<td>20%</td>
<td>See Schedule</td>
</tr>
<tr>
<td>Oral Presentation</td>
<td>10%</td>
<td>See schedule</td>
</tr>
<tr>
<td>Exam</td>
<td>15%</td>
<td>End of Semester</td>
</tr>
</tbody>
</table>

Assignment I

Due: See schedule
Weighting: 15%

ModelVision Exercises

This Assessment Task relates to the following Learning Outcomes:
• 1. Students will be able to utilise geophysical software to solve geological problems
• 2. Students will acquire new computational skills
• 3. Students will be able to process raw geophysical data to best highlight geological information
• 4. Competence in accessing, using and synthesising appropriate information
• 6. Capacity to present ideas clearly with supporting evidence

Assignment II

Due: See schedule
Weighting: 15%

MAPINFO/Discover exercises

This Assessment Task relates to the following Learning Outcomes:
• 1. Students will be able to utilise geophysical software to solve geological problems
• 2. Students will acquire new computational skills
• 4. Competence in accessing, using and synthesising appropriate information
Assignment III
Due: See schedule
Weighting: 15%
Geosoft exercises

This Assessment Task relates to the following Learning Outcomes:
• 1. Students will be able to utilise geophysical software to solve geological problems
• 2. Students will acquire new computational skills
• 4. Competence in accessing, using and synthesising appropriate information
• 6. Capacity to present ideas clearly with supporting evidence

Assignment IV
Due: See Schedule
Weighting: 10%
ERMAPPER exercises

This Assessment Task relates to the following Learning Outcomes:
• 1. Students will be able to utilise geophysical software to solve geological problems
• 2. Students will acquire new computational skills
• 4. Competence in accessing, using and synthesising appropriate information
• 5. Application of knowledge to solving problems and evaluating ideas and information
• 6. Capacity to present ideas clearly with supporting evidence

Assignment V
Due: See Schedule
Weighting: 20%
Interpretation exercise

This Assessment Task relates to the following Learning Outcomes:
• 2. Students will acquire new computational skills
• 3. Students will be able to process raw geophysical data to best highlight geological information
• 4. Competence in accessing, using and synthesising appropriate information
• 5. Application of knowledge to solving problems and evaluating ideas and information
• 6. Capacity to present ideas clearly with supporting evidence
Oral Presentation
Due: See schedule
Weighting: 10%
Seminar on a specialist paper.

This Assessment Task relates to the following Learning Outcomes:
• 3. Students will be able to process raw geophysical data to best highlight geological information
• 4. Competence in accessing, using and synthesising appropriate information
• 6. Capacity to present ideas clearly with supporting evidence

Exam
Due: End of Semester
Weighting: 15%
Theory and Practical examination

This Assessment Task relates to the following Learning Outcomes:
• 3. Students will be able to process raw geophysical data to best highlight geological information
• 5. Application of knowledge to solving problems and evaluating ideas and information

Delivery and Resources
There is no textbook for the unit. A copy of DENTITH AND MUDGE (QC807 .D46 2014) or SHARMA (QE501.3.S48) or (TA705.S515/1997), or PARASNIS (TN269P32) or REYNOLDS (QC808.5.R49) or TELFORD (TN269.T44) or KEAREY and BROOKS (TN269.K36) or MUSSETT and KHAN (QE501.M87) would be useful to have around. Copies of relevant sections of the software manuals are on all the computers and I will make them available on the iLearn WEBSITE at https://ilearn.mq.edu.au/login/MQ/. I will post the assignments and PDFs of relevant sections of the manuals on that site.

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

Unit Guide GEOS929 Geophysical Data Processing

Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

• Workshops
• StudyWise
• Academic Integrity Module for Students
• Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.
IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/. When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Critical, Analytical and Integrative Thinking
Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- 3. Students will be able to process raw geophysical data to best highlight geological information
- 6. Capacity to present ideas clearly with supporting evidence

Assessment tasks

- Assignment I
- Assignment V
- Exam

PG - Discipline Knowledge and Skills
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- 1. Students will be able to utilise geophysical software to solve geological problems
- 2. Students will acquire new computational skills
- 3. Students will be able to process raw geophysical data to best highlight geological information
- 4. Competence in accessing, using and synthesising appropriate information
- 5. Application of knowledge to solving problems and evaluating ideas and information
6. Capacity to present ideas clearly with supporting evidence

Assessment tasks
- Assignment I
- Assignment II
- Assignment III
- Assignment IV
- Assignment V
- Oral Presentation
- Exam

PG - Research and Problem Solving Capability
Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes
- 3. Students will be able to process raw geophysical data to best highlight geological information
- 5. Application of knowledge to solving problems and evaluating ideas and information

Assessment tasks
- Assignment V
- Oral Presentation
- Exam

PG - Effective Communication
Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcomes
- 1. Students will be able to utilise geophysical software to solve geological problems
- 2. Students will acquire new computational skills
• 3. Students will be able to process raw geophysical data to best highlight geological information
• 4. Competence in accessing, using and synthesising appropriate information
• 5. Application of knowledge to solving problems and evaluating ideas and information
• 6. Capacity to present ideas clearly with supporting evidence

Assessment tasks

• Assignment I
• Assignment II
• Assignment III
• Assignment IV
• Assignment V
• Oral Presentation
• Exam