MECH402
Energy Sustainable Design
S1 Day 2016
Dept of Engineering

Contents

General Information .. 2
Learning Outcomes .. 2
General Assessment Information 3
Assessment Tasks .. 3
Delivery and Resources ... 6
Unit Schedule ... 6
Policies and Procedures ... 7
Graduate Capabilities ... 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Dr Nazmul Huda
nazmul.huda@mq.edu.au
Contact via Phone: 02 9850 9598
Office location: E6B 143
Consultation hours: Thursday 2.00 to 3.00 pm/ Friday 2.00 to 3.00 pm

Dr Ann Lee
ann.lee@mq.edu.au
Contact via Phone: +61 2 9850 9069
Room: E6B 142
Consultation hours: By Appointment

Credit points
3

Prerequisites
MECH301 and MECH302

Corequisites

Co-badged status

Unit description
The students will learn about energy sustainable design processes, energy efficiency, heating, ventilation and air-conditioning systems design; Psychrometric Analysis, heating and cooling load calculations; air-conditioning equipment selection; duct design methods; concept of refrigeration and its applications; refrigeration cycles; refrigeration compressors, condensers, evaporators, expansion devices; vapour compression system design and analysis.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. The students will develop comprehensive understanding of energy sustainable design processes
2. The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
3. The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.

4. The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

General Assessment Information

In order to pass the unit satisfactorily, the students need to fulfill the following criteria:

1. at least 50% marks overall
2. must submit at least 2 assignments and the group project
3. For both the midterm and final examinations, not following instructions as indicated may result in the affected questions not being marked.
4. It is a requirement of the course that students **perform satisfactorily** in the final examination.
5. Late submission of any assessment task will be penalized.

The unit will be graded according to the Macquarie University Grading policy. The following grades will be used according to the listed numerical range:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Numerical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>High Distinction</td>
<td>85-100</td>
</tr>
<tr>
<td>D</td>
<td>Distinction</td>
<td>75-84</td>
</tr>
<tr>
<td>Cr</td>
<td>Credit</td>
<td>65-74</td>
</tr>
<tr>
<td>P</td>
<td>Pass</td>
<td>50-64</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>0-49</td>
</tr>
</tbody>
</table>

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20%</td>
<td>Week 3, 5, 9, and 11</td>
</tr>
<tr>
<td>Group Project</td>
<td>20%</td>
<td>Week 12</td>
</tr>
<tr>
<td>Mid term test</td>
<td>20%</td>
<td>Week 7</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
<td>During exam period</td>
</tr>
</tbody>
</table>
Assignments
Due: **Week 3, 5, 9, and 11**
Weighting: **20%**

4 Assignments x 5 marks each

Four individual assignments will test the student’s understanding of the course material taught up to the point each assignment is distributed. The student is expected to solve problems which test both the concepts taught as well as the technical capabilities of the students in doing energy sustainable design. These assignments must be completed individually.

This Assessment Task relates to the following Learning Outcomes:
- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Group Project
Due: **Week 12**
Weighting: **20%**

Students will be divided to a group of 4. Each group will be given a topic and required to perform heating/cooling load calculation and design in a group report format.

This Assessment Task relates to the following Learning Outcomes:
- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Mid term test
Due: Week 7
Weighting: 20%

An in-class 1hr test assessing material delivered between weeks 1 and 6.

This Assessment Task relates to the following Learning Outcomes:

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Final Exam
Due: During exam period
Weighting: 40%

Final examination assessing all material delivered throughout the course

This Assessment Task relates to the following Learning Outcomes:

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
• The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Delivery and Resources

The following texts are recommended:

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Lecturer</th>
<th>Laboratory/ Tutorial</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Energy sustainable design processes, energy efficiency</td>
<td>Dr. Huda</td>
<td>No tutorial</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Concept of refrigeration and its applications; refrigeration cycles</td>
<td>Dr. Lee</td>
<td>Refrigeration cycles</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Refrigeration compressors, condensers, evaporators, expansion devices</td>
<td>Dr. Lee</td>
<td>Refrigeration cycles</td>
<td>Assignment 1 due</td>
</tr>
<tr>
<td>4</td>
<td>Vapour compression system design and analysis</td>
<td>Dr. Lee</td>
<td>Vapour compression cycles</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Psychrometric Analysis heating and cooling load calculations</td>
<td>Dr. Lee</td>
<td>Vapour compression cycles</td>
<td>Assignment 2 due</td>
</tr>
</tbody>
</table>
6 Psychrometric Analysis heating and cooling load calculations Dr. Lee Applied Psychrometrics

7 Psychrometric Analysis heating and cooling load calculations Dr. Lee Midterm Examination

8 Use of CONTAM Program Dr. Lee Applied Psychrometrics

9 Heating, ventilation and air-conditioning systems design process Dr. Lee Tutorial on CONTAM Assignment 3 due

10 Air-conditioning equipment selection; duct design methods; Dr. Lee Air Duct tutorial

11 Sustainable buildings, materials, resource efficiency, fire safety Dr. Lee Group Project Assignment 4 due

12 No lecture Dr. Lee Group Project Group Project due

13 Revision Dr. Lee No Tutorial

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.
Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.

Assessment tasks

- Assignments
- Group Project
- Mid term test
- Final Exam

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.
This graduate capability is supported by:

Learning outcomes

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment tasks

- Assignments
- Group Project
- Mid term test
- Final Exam

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcome

- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment task

- Group Project

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to
handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment task

- Group Project

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systematically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.

Assessment tasks

- Assignments
- Group Project
- Mid term test
- Final Exam
Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment tasks

- Assignments
- Group Project

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives; they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcome

- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment tasks

- Assignments
- Mid term test
- Final Exam
Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- The students will develop comprehensive understanding of energy sustainable design processes
- The students will be able to apply their prior knowledge of thermodynamics and heat transfer, analytical and strategic thinking to design real world engineering systems.
- The students will be able to analyse refrigeration and air-conditioning cycles and apply their acquired knowledge to improve the design and optimize the operating parameters of existing cycle.
- The students will develop specific skills of project management, employment-related teamwork and will be able to demonstrate professional dispositions and an ethical stance.

Assessment tasks

- Assignments
- Group Project
- Mid term test
- Final Exam