General Information

Unit convenor and teaching staff
Lecturer
Diego Molla-Aliod
diego.molla-aliod@mq.edu.au
Contact via diego.molla-aliod@mq.edu.au
E6A331
See: http://comp.mq.edu.au/~diego/

Lecturer
Rolf Schwitter
rolf.schwitter@mq.edu.au
Contact via rolf.schwitter@mq.edu.au
E6A333
Fridays 11-12

Credit points
3

Prerequisites
(39cp at 100 level or above) including (COMP249 or COMP257)

Corequisites

Co-badged status

Unit description
This unit explores the issues involved in building natural language processing (NLP) applications that operate on large bodies of real text such as are found on the world wide web. With the web full of unstructured and largely text-based data, the applications needed to handle this have their own particular characteristics. In this unit we discuss some core applications for dealing with data on the web, such as spam filtering and search engines. The unit also explores some developments of web, such as emerging semantic web technologies which support the exchange of XML metadata on the web, and Web 2.0 technologies (such as social networking, folksonomies, wikis and blogs). Application areas covered include information retrieval, web search, document summarisation, machine translation and information extraction.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/
Learning Outcomes

1. Explain the main techniques that are used to develop and implement intelligent document processing applications.
2. Describe the functionality of the key components in document processing architectures.
3. Implement text processing applications using a programming language.
4. Apply web technology to document processing.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>5%</td>
<td>Week 3</td>
<td></td>
</tr>
<tr>
<td>Assignment 2</td>
<td>20%</td>
<td>Week 7</td>
<td></td>
</tr>
<tr>
<td>Assignment 3</td>
<td>15%</td>
<td>Week 12</td>
<td></td>
</tr>
<tr>
<td>Final exam</td>
<td>60%</td>
<td></td>
<td>Examination period</td>
</tr>
</tbody>
</table>

Assignment 1

Due: Week 3
Weighting: 5%

In this assignment you will implement a simple document processing application that uses pre-packaged tools.

The assignment will be submitted using iLearn.

This Assessment Task relates to the following Learning Outcomes:

- Explain the main techniques that are used to develop and implement intelligent document processing applications.
- Implement text processing applications using a programming language.
- Apply web technology to document processing.

Assignment 2

Due: Week 7
Weighting: 20%

This assignment will use more powerful techniques such as those used in commercial and research applications. You will experience the processing of real text data, which can be messy and unpredictable at times. At the end of the assignment you will submit a report describing the system, its implementation, and its evaluation.
The assignment will be submitted using iLearn.

This Assessment Task relates to the following Learning Outcomes:

• Explain the main techniques that are used to develop and implement intelligent document processing applications.
• Describe the functionality of the key components in document processing architectures.
• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Assignment 3
Due: Week 12
Weighting: 15%

In this assignment you will experiment with the integration of Semantic Web technology into document processing. You will be asked to study a particular domain and report on the integration of Semantic Web technologies suitable for the domain, including what sort of SPARQL queries would be applicable to solve specific user needs.

The assignment will be submitted using iLearn.

This Assessment Task relates to the following Learning Outcomes:

• Explain the main techniques that are used to develop and implement intelligent document processing applications.
• Describe the functionality of the key components in document processing architectures.
• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Final exam
Due: Examination period
Weighting: 60%

The final exam will focus on the theoretical aspects of the unit. There will be few questions about implementation issues.

This Assessment Task relates to the following Learning Outcomes:

• Explain the main techniques that are used to develop and implement intelligent document processing applications.
• Describe the functionality of the key components in document processing architectures.
Delivery and Resources

Required and Recommended Texts

Most of the contents of the unit will be based on the following two books:

Additional material will be made available during the semester, in conjunction with the lecture notes. See the unit schedule for a listing of the most relevant reading for each week.

Technology Used and Required

The following software is used in COMP348:

1. Python: www.python.org
2. iPython notebook: ipython.org/notebook.html
3. NLTK: nltk.org
4. scikit-learn: scikit-learn.org
5. rdflib: pypi.python.org/pypi/rdflib/
6. Protege Desktop: protege.stanford.edu
7. Saxon HE: saxon.sourceforge.net
9. XML Copy Editor: xml-copy-editor.sourceforge.net

This software is installed in the labs; you should also ensure that you have working copies of all the above on your own machine. Note that many packages come in various versions; to avoid potential incompatibilities, you should install versions as close as possible to those used in the labs.

Unit Web Page

Note that the majority of the unit materials is publicly available while some material requires you to log in to iLearn to access it.

The unit will make extensive use of discussion boards hosted within iLearn. Please post questions there, they will be monitored by the staff on the unit.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP348 Document Processing and the Semantic Web</td>
<td>http://unitguides.mq.edu.au/unit_offerings/73108/unit_guide/print</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>NLP Systems + Text Processing in Python</td>
<td>NLTK Ch 1</td>
</tr>
<tr>
<td>2</td>
<td>Information retrieval</td>
<td>Manning et al. (2008)</td>
</tr>
<tr>
<td>3</td>
<td>Text Classification (I)</td>
<td>NLTK Ch 6</td>
</tr>
<tr>
<td>4</td>
<td>Text Classification (II)</td>
<td>NLTK Ch 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manning et al Ch 13</td>
</tr>
<tr>
<td>5</td>
<td>Sequence Labelling</td>
<td>NLTK Ch 6</td>
</tr>
<tr>
<td>6</td>
<td>Information Extraction and Summarisation</td>
<td>NLTK Ch 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hovy (2003)</td>
</tr>
<tr>
<td></td>
<td>Recess</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The Semantic Web; XML</td>
<td>XSLT Tutorial at W3School</td>
</tr>
<tr>
<td>8</td>
<td>RDF, RDF Schema and SPARQL</td>
<td>RDF Primer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPARQL</td>
</tr>
<tr>
<td>9</td>
<td>Linked Data</td>
<td>DBpedia</td>
</tr>
<tr>
<td>10</td>
<td>Ontologies</td>
<td>Kroetzsch et al (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OWL Primer</td>
</tr>
<tr>
<td>11</td>
<td>Rule Languages</td>
<td>RIF Primer</td>
</tr>
<tr>
<td>12</td>
<td>Semantic Web Applications and Recent Trends</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the [Disability Service](http://www.mq.edu.au/policy/docs/disability_service) who can provide appropriate help with any issues that arise during their studies.
IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

• Explain the main techniques that are used to develop and implement intelligent document processing applications.
• Describe the functionality of the key components in document processing architectures.
• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Assessment tasks

• Assignment 1
• Assignment 2
• Assignment 3
• Final exam

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:
Learning outcomes

• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Assessment tasks

• Assignment 1
• Assignment 2
• Assignment 3
• Final exam

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Assessment tasks

• Assignment 1
• Assignment 2
• Assignment 3
• Final exam

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

• Explain the main techniques that are used to develop and implement intelligent document processing applications.
• Describe the functionality of the key components in document processing architectures.
Assessment tasks

- Assignment 1
- Assignment 2
- Assignment 3
- Final exam

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Explain the main techniques that are used to develop and implement intelligent document processing applications.
- Describe the functionality of the key components in document processing architectures.
- Implement text processing applications using a programming language.
- Apply web technology to document processing.

Assessment tasks

- Assignment 1
- Assignment 2
- Assignment 3
- Final exam

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Explain the main techniques that are used to develop and implement intelligent document processing applications.
- Describe the functionality of the key components in document processing architectures.
• Implement text processing applications using a programming language.
• Apply web technology to document processing.

Assessment tasks

• Assignment 1
• Assignment 2
• Assignment 3
• Final exam

Assessment Standards

The following table shows an indication of achievements required for each learning outcome. The standards of a level also include the standards of a lower level. For example, the standards of Proficient includes the standards of Functional and Developing.

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>Developing</th>
<th>Functional</th>
<th>Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Describe the range of applications that require intelligent text processing.</td>
<td>Limited ability to describe the main applications.</td>
<td>Ability to describe the main characteristics of the main applications.</td>
<td>Ability to describe and compare a wide range of applications, providing insight about their key issues and current state of the art.</td>
</tr>
<tr>
<td>2. Explain the main techniques that are used to develop and implement intelligent document processing applications.</td>
<td>Ability to describe only some of the main techniques.</td>
<td>Ability to describe the main techniques.</td>
<td>Ability to apply the techniques to specific problem instances.</td>
</tr>
<tr>
<td>3. Explain the main components of the Semantic Web and how they relate to Document Processing.</td>
<td>Limited ability to explain the main components of the Semantic Web.</td>
<td>Ability to describe the main components of the Semantic Web.</td>
<td>Ability to explain the main components of the Semantic Web, with insightful references about the interplay between Semantic Web and document processing.</td>
</tr>
</tbody>
</table>
Changes Made to Previous Offerings

Compared to last year, the first half of the unit will have less emphasis on the theoretical aspects of machine learning, and a stronger emphasis on the use of packaged solutions currently available. The reason for these changes is the increasing availability of text processing APIs, and the creation of a new unit COMP257 for data mining.

Those students interested on the details of machine learning are encouraged to enrol in the new unit COMP257 “Data Science”. The first offering of COMP257 will be in the second semester of 2017.

The learning outcomes and grading policy have been simplified.

<table>
<thead>
<tr>
<th>4. Implement text processing applications using a programming language such as Python.</th>
<th>Ability to implement trivial applications that are not much more complex than the examples given in standard textbooks and tutorials.</th>
<th>Ability to implement, document and evaluate simple end-to-end intelligent text-processing applications.</th>
<th>Ability to implement and evaluate complex intelligent text-processing applications. Ability to document and evaluate the implementation in a manner that shows insight.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Integrate Semantic Web technology into Document Processing.</td>
<td>Limited ability to implement core elements of Semantic Web applications.</td>
<td>Ability to implement and document simple Semantic Web applications.</td>
<td>Ability to implement and document Semantic Web applications that require the use of Document Processing technology, in a manner that shows insight.</td>
</tr>
</tbody>
</table>

All the unit assessed tasks will be marked on a numerical scale that reflects how well the student meets the relevant learning outcomes. This mapping of learning outcomes to marks will be specified in the assignment descriptions.

In order to pass the unit, you need to obtain at least 50% of the sum of marks of all individual assessments.

If you apply for Disruption to Study for your final examination, you must make yourself available for the week of July 24 – 28, 2017. If you are not available at that time, there is no guarantee an additional examination time will be offered. Specific examination dates and times will be determined at a later date.