Contents

General Information .. 2
Learning Outcomes .. 2
General Assessment Information 3
Assessment Tasks ... 3
Delivery and Resources ... 6
Unit Schedule ... 8
Policies and Procedures ... 9
Graduate Capabilities .. 11
Changes from Previous Offering 14

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Unit convenor and teaching staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Convenor</td>
</tr>
<tr>
<td>Kehui Luo</td>
</tr>
<tr>
<td>kehui.luo@mq.edu.au</td>
</tr>
<tr>
<td>Contact via kehui.luo@mq.edu.au</td>
</tr>
<tr>
<td>Room 545, 12 Wally’s Walk</td>
</tr>
<tr>
<td>Thursday 10-11am and 2-3pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Prerequisites

Corequisites

- ((Admission to MAppStat or GradDipAppStat) and STAT680) or ((admisson to MBiotech or GradDipBiotech or MBioBus or MMarScMgt or MConsBiol or GradDipConsBiol or MLabQAMgt or PGCertLabQAMgt or GradDipLabQAMgt or GradCertLabQAMg) and STAT830) or (admission to MSc or MActPrac)

Co-badged status

Co-badged with STAT714; Co-taught with STAT373

Unit description

This unit consists of two modules. The first module is concerned with the design of experiments. Many of the standard designs and their mathematical formulation are discussed, including completely randomised design, complete block design, random effects model, axb factorial treatment design, and 2 to the K factorial and fractional factorial designs, and extensive use is made of Minitab. The second module of the unit is devoted to survey designs. Questionnaire construction, and the theories of sampling, stratified sampling, systematic sampling, ratio and regression estimators, cluster sampling, and multistage sampling are all discussed.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Understand general mathematical formulation and framework for commonly used experimental and survey designs, completely randomised, randomised block, axb
factorial designs, random effects models, and simple random sampling, stratified sampling, clustering sampling and systematic sampling designs.

2. Demonstrate a good understanding of contrast, orthogonal contrasts, orthogonal contrast set and their statistical and practical implications in experimental designs, and the capability of formulating appropriate ones for answering specific research questions of studies.

3. Have extensive knowledge of the principles of experimental and survey designs, and the statistical properties of various parameter estimates.

4. Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.

5. Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.

6. Be competent in applying complex statistical methods including Yate’s algorithm, design resolution and defining contrast algorithm to analyse data from 2k-p fractional factorial designs.

General Assessment Information

Students enrolled in this unit are required to complete independently three (normal) assignments plus one additional assignment, submit each of the four assignments by its due date/time specified in the assignment, and sit a three-hour written examination during the University examination period for the semester.

No extension will be granted for any assessment task without an application for Disruption to Studies being submitted and approved.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>30%</td>
<td>Tuesday (Week 6, 8 and 12)</td>
</tr>
<tr>
<td>Additional assignment</td>
<td>15%</td>
<td>Week 10</td>
</tr>
<tr>
<td>Examination</td>
<td>55%</td>
<td>University Examination Period</td>
</tr>
</tbody>
</table>
Assignments
Due: **Tuesday (Week 6, 8 and 12)**
Weighting: **30%**

Three assignments (10% each) are set for students to complete independently, applying the knowledge gained from lecture(s) and their own reading and with and/or without using the statistical software, Minitab. They will be made available on iLearn.

Each of the three assignments should be submitted electronically on the unit iLearn by its due date and time, which will be included in the assignment. Students must keep a soft or hard copy of any assignment submitted. In the event of an assignments being misplaced, a replacement of it will be requested.

Students who have not submitted an assignment by its due date and time will be awarded a mark of 0 for the assignment, except for cases in which an application for Disruption of Studies is made and approved.

This Assessment Task relates to the following Learning Outcomes:

- Understand general mathematical formulation and framework for commonly used experimental and survey designs, completely randomised, randomised block, axb factorial designs, random effects models, and simple random sampling, stratified sampling, clustering sampling and systematic sampling designs.
- Demonstrate a good understanding of contrast, orthogonal contrasts, orthogonal contrast set and their statistical and practical implications in experimental designs, and the capability of formulating appropriate ones for answering specific research questions of studies.
- Have extensive knowledge of the principles of experimental and survey designs, and the statistical properties of various parameter estimates.
- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.

Additional assignment
Due: **Week 10**
Weighting: **15%**

This additional assignment (**Assignment 4**) is based on the three additional lectures on 2^k factorial and fractional factorial designs available under Weeks 6-8 sections on the unit iLearn, and specifically designed for STAT814/STAT714 students to complete independently. It will be made available under the Assignments section on the unit iLearn. **Details about its due date**
and submission will be included in the assignment. Students must submit the assignment electronically on the unit iLearn by its due date and time.

Students must keep a soft or hard copy of any assignment that they submit. In the event of their assignment being misplaced, a replacement will be requested.

Students who have not submitted an assignment by its due date and time will be awarded a mark of 0 for the assignment, except for cases in which an application for Disruption of Studies is made and approved.

This Assessment Task relates to the following Learning Outcomes:

- Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.
- Be competent in applying complex statistical methods including Yate’s algorithm, design resolution and defining contrast algorithm to analyse data from 2k-p fractional factorial designs.

Examination

Due: University Examination Period
Weighting: 55%

There will be a three-hour written examination that will be timetabled within the official University Examination Timetable. The University Examination Timetable will be available in draft form approximately eight weeks before the commencement of the the University examinations and in final form approximately four weeks before the commencement of the examinations at: http://students.mq.edu.au/student_admin/exams/

The only exception to not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In this case, you may notify the University of your disruption to studies by providing required documentation through https://ask.mq.edu.au/. Please see Disruption to Studies policy at http://www.mq.edu.au/policy/docs/disruption_studies/policy.html for further information.

If you notify the University of your disruption to studies for your examination, you must make yourself available for the week of July 24 – 28, 2017. If you are not available at that time, there is no guarantee an additional examination time will be offered. Specific examination dates and times will be determined at a later date.

This Assessment Task relates to the following Learning Outcomes:

- Understand general mathematical formulation and framework for commonly used experimental and survey designs, completely randomised, randomised block, axb
factorial designs, random effects models, and simple random sampling, stratified sampling, clustering sampling and systematic sampling designs.

- Demonstrate a good understanding of contrast, orthogonal contrasts, orthogonal contrast set and their statistical and practical implications in experimental designs, and the capability of formulating appropriate ones for answering specific research questions of studies.
- Have extensive knowledge of the principles of experimental and survey designs, and the statistical properties of various parameter estimates.
- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.
- Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.
- Be competent in applying complex statistical methods including Yate’s algorithm, design resolution and defining contrast algorithm to analyse data from 2k-p fractional factorial designs.

Delivery and Resources

Classes

Internal students are required to attend a 3-hour lecture per week (together with STAT373 students) beginning in Week 1, and may also attend (not compulsory) a 1-hour tutorial class designed for STAT373 students beginning in Week 2.

Times and locations for all classes can be found on the University web site at: www.timetables.mq.edu.au. In the case of changing classes, time and/or location, you will be informed at the lecture and/or on the unit iLearn in advance.

You are also required to study the three sets of lecture slides and listen to its related lecture recordings (previously recorded by Dr Thomas Fung) on the additional topics that are specially designed for STAT814/STAT714 from Week 6 to Week 8. These will be made available after Week 5 on the unit iLearn (https://iLearn.mq.edu.au/). Assignment 4 is based on these three additional lectures.

Note: You are welcome to come to see the lecturer during staff consultation time with questions related to the unit. You could also contact the lecturer by e-mail or telephone. Only the Macquarie University student e-mail accounts may be used to communicate with staff.

For external students only:

> There is no on-campus session for distance (external) students in this unit;
Questions relating to **course administration** should be directed to the postgraduate administrator:

Ms Lesley Mooney
Level 6, 12 Wally's Walk; phone: +61 2 9850 8550
E-mail: lesley.mooney@mq.edu.au

Course materials, recommended text and other references

Weekly lecture notes will be made available on the unit iLearn (https://iLearn.mq.edu.au/) at least one day before the lecture. Internal students should print out and bring the relevant lecture notes into the lecture.

Recommended text:

Other useful references (available in library Reserve):

Technology Used and Required

Software: Minitab is used in this unit. Information about Minitab can be found on its web site at http://www.minitab.com. This software is provided for free to Macquarie students, and can be downloaded from the student portal at http://students.mq.edu.au/home/ for home use. Students can also use Minitab online via iLab (https://wiki.mq.edu.au/display/iLab/About). Remember that any work or results produced via iLab in all computing labs on the University campus must be saved onto iLab desktop and then emailed to yourself.

Calculator: An electronic calculator is required throughout this unit. Only calculators with no text retrieval capacity are permitted to be used in the examination.

Unit Web Page and iLearn access: The unit web page is available on iLearn and can be accessed at: http://ilearn.mq.edu.au, under the 'STAT373 Design of Surveys and Experiments /STAT814_STAT714 Statistical Design’ link. Note that you should visit this web site regularly for
course materials including lecture slides, lecture recordings, tutorials and assignments, and also possible announcements placed by the Lecturer.

The Discussion Forum on the unit iLearn can be used for online discussion with other students enrolled in STAT373 or STAT814_STAT714 on any problems or topics related to the unit. The lecturer will visit the Forum from time to time.

Learning and Teaching activities

Lectures: Lectures begin in Week 1. Students are required to attend a 3-hour lecture each week. Topic(s) for each week are set in the Unit Schedule in this unit guide. Students are encouraged to read the relevant chapter(s) recommended before coming to the lecture.

An iLecture will be recorded for each lecture when possible and made available on the unit iLearn (under echo360) soon after the lecture is completed.

Tutorial Exercises: Each week a set of tutorial exercises will be available on iLearn for students to practice. Its solution will be discussed during the STAT373 tutorial class in the following week and also made available on iLearn after then.

Assignments: Three (normal) assignments and one additional assignment are set for students to complete independently. To assist with further learning, solutions to the assignments (when possible) will be made available later (on iLearn).

Unit Schedule

STAT 814/STAT714

Experimental design:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Chapter (Kuehl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Designed experiments vs observational studies; Completely randomized design (CRD): one-way ANOVA</td>
<td>1, 2</td>
</tr>
<tr>
<td>2</td>
<td>One-way ANOVA (contd); Contrasts</td>
<td>2, 3</td>
</tr>
<tr>
<td>3</td>
<td>Contrasts (contd); Multiple comparisons; Model checking</td>
<td>3, 4</td>
</tr>
<tr>
<td>4</td>
<td>More on CRD; Randomized block design (RBD)</td>
<td>4, 8</td>
</tr>
<tr>
<td>5</td>
<td>Factorial experiments: two-way ANOVA; Random effects – one-way</td>
<td>6, 5, 11</td>
</tr>
</tbody>
</table>
Analysis of covariance

For STAT814/STAT714 ONLY, three (3) extra pre-recorded lectures and notes of additional topics on 2^k factorial and fractional factorial designs will be made available on the unit iLearn.

Survey design:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Introduction to surveys: sample survey and its principal steps, probability and non-probability sampling, and sources of error</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Simple random sampling (SRS); Parameter estimation</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>SRS (contd): estimation of proportion; Stratified random sampling</td>
<td>2, 4</td>
</tr>
<tr>
<td>10</td>
<td>Stratified random sampling (contd); Choosing strata sample sizes</td>
<td>4, 3</td>
</tr>
<tr>
<td>11</td>
<td>Ratio and regression estimators</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>Cluster sampling; Systematic sampling</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
<td></td>
</tr>
</tbody>
</table>

Note: There may be minor deviations from this timetable if insufficient time is available for some topics.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in *iLearn*, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in *eStudent*. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.
When using the University’s IT, you must adhere to the [Acceptable Use of IT Resources Policy](http://unitguides.mq.edu.au/unit_offerings/74750/unit_guide/print). The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.
- Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.

Assessment tasks

- Assignments
- Additional assignment
- Examination

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcome

- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.
Assessment tasks

• Assignments
• Additional assignment
• Examination

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

• Understand general mathematical formulation and framework for commonly used experimental and survey designs, completely randomised, randomised block, axb factorial designs, random effects models, and simple random sampling, stratified sampling, clustering sampling and systematic sampling designs.
• Demonstrate a good understanding of contrast, orthogonal contrasts, orthogonal contrast set and their statistical and practical implications in experimental designs, and the capability of formulating appropriate ones for answering specific research questions of studies.
• Have extensive knowledge of the principles of experimental and survey designs, and the statistical properties of various parameter estimates.
• Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.
• Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.
• Be competent in applying complex statistical methods including Yate’s algorithm, design resolution and defining contrast algorithm to analyse data from 2k-p fractional factorial designs.

Assessment tasks

• Assignments
• Additional assignment
• Examination
PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.
- Have extensive knowledge of complex experimental designs including the fractional factorial design and its mathematical formulation, and use it to tackle real world problems.

Assessment tasks

- Assignments
- Additional assignment
- Examination

PG - Engaged and Responsible, Active and Ethical Citizens

Our postgraduates will be ethically aware and capable of confident transformative action in relation to their professional responsibilities and the wider community. They will have a sense of connectedness with others and country and have a sense of mutual obligation. They will be able to appreciate the impact of their professional roles for social justice and inclusion related to national and global issues.

This graduate capability is supported by:

Learning outcome

- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.

Assessment task

- Assignments
PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcome

- Demonstrate a good understanding of the assumptions and limitations of the statistical methods for each experimental or survey design, and be able to apply appropriate experimental or survey designs to real world studies and analyse data from each design with and/or without using a statistical software package.

Assessment task

- Assignments

Changes from Previous Offering

No major differences from previous offering.