STAT375
Linear Models
S1 Evening 2013

Statistics

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>6</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>7</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>10</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>11</td>
</tr>
</tbody>
</table>

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Unit convenor and teaching staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Convenor</td>
</tr>
<tr>
<td>Gillian Heller</td>
</tr>
<tr>
<td>gillian.heller@mq.edu.au</td>
</tr>
<tr>
<td>Contact via gillian.heller@mq.edu.au</td>
</tr>
<tr>
<td>E4A 533</td>
</tr>
<tr>
<td>Thursday 12-2 pm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Marschner</td>
</tr>
<tr>
<td>ian.marschner@mq.edu.au</td>
</tr>
<tr>
<td>Contact via ian.marschner@mq.edu.au</td>
</tr>
<tr>
<td>E4A 540</td>
</tr>
<tr>
<td>11am Wednesday</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>39cp including (STAT270(P) or STAT271(P) or BIOL235(P) or PSY222(P) or PSY248(P))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corequisites</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Co-badged status</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit description</th>
</tr>
</thead>
<tbody>
<tr>
<td>This unit discusses statistical modelling in general and in particular demonstrates the wide applicability of linear and generalised linear models. Topics include multiple linear regression, logistic regression and Poisson regression. The emphasis is on practical issues in data analysis with some reference to the theoretical background. Statistical packages are used for both model fitting and diagnostic testing.</td>
</tr>
</tbody>
</table>

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/

Learning Outcomes

1. Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
2. Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).

3. Fit a linear model to obtain estimates together with their standard errors in applied problems.

4. Analyse the adequacy of a linear model and suggest appropriate modifications when needed.

5. Formulate and solve applied problems using linear modelling.

6. Use standard statistics packages to carry out these analyses.

7. Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>15%</td>
<td>26 March</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>15%</td>
<td>7 May</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>15%</td>
<td>28 May</td>
</tr>
<tr>
<td>Tutorials</td>
<td>5%</td>
<td>28 Feb - 6 June</td>
</tr>
<tr>
<td>Examination</td>
<td>50%</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Assignment 1

Due: **26 March**

Weighting: **15%**

There are three assignments, worth 15% each. They should be submitted to the lecturer, by the due time and date. They give you an opportunity to reinforce and apply the concepts covered in lectures and the skills learned in tutorial sessions.

Extensions to assignments are at the discretion of the lecturer. It is the responsibility of the student to prove that there has been unavoidable disruption. Marks will be deducted for late submissions in the absence of an approved extension.

In order to pass the unit, students need to perform satisfactorily (i.e. achieve at least 50%) on all components of assessment.

This Assessment Task relates to the following Learning Outcomes:
• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.
• Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Assignment 2
Due: 7 May
Weighting: 15%

Assignment 2

This Assessment Task relates to the following Learning Outcomes:
• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.
• Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Assignment 3
Due: 28 May
Weighting: 15%

Assignment 3
This Assessment Task relates to the following Learning Outcomes:

- Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
- Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
- Fit a linear model to obtain estimates together with their standard errors in applied problems.
- Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
- Formulate and solve applied problems using linear modelling.
- Use standard statistics packages to carry out these analyses.
- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Tutorials
Due: 28 Feb - 6 June
Weighting: 5%

A mark worth 5% of your final mark, will be given for your participation in the laboratory tutorials, on the basis of collected laboratory sheets.

This Assessment Task relates to the following Learning Outcomes:

- Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
- Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
- Fit a linear model to obtain estimates together with their standard errors in applied problems.
- Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
- Formulate and solve applied problems using linear modelling.
- Use standard statistics packages to carry out these analyses.
- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.
Examination

Due: TBA
Weighting: 50%

The examination will cover the material studied in the whole unit and address all the unit outcomes. You may take one A4 sheet, handwritten on both sides, into the final examination.

You MUST perform satisfactorily in the final examination in order to pass the unit, regardless of your performance throughout the semester.

The only exception to not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these circumstances you may wish to consider applying for Special Consideration.

A supplementary examination will only be granted if a student has satisfactory coursework (ie. at least 25 marks out of 50). If a supplementary exam is granted as a result of the Special Consideration process, it will be scheduled after the conclusion of the official exam period.

It is Macquarie University policy not to set early examinations for individuals or groups of students. You are expected to be available until the end of the teaching semester, that is the final day of the official examination period.

This Assessment Task relates to the following Learning Outcomes:

• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.
• Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Delivery and Resources

You should attend the following classes each week:

• 2 hour lecture beginning in Week 1: Tuesday 6-8 pm, W5C 312
Unit Schedule

- 2 hour laboratory tutorial beginning in Week 1: Thursday 6-8 pm, E4B 102

Lectures begin in Week 1. Copies of the lecture notes will be handed out in week 1; for the rest of the semester students should print off the course notes from iLearn, and bring them to lectures.

Tutorials begin in week 1 and are based on work from the current week’s lecture. Tutorials are held in a computing lab and allow you to practise techniques learnt in lectures. We will mainly use SPSS, but we will supplement this with other statistical software. You will complete worksheets as part of the learning process.

SPSS version 21 is installed in the computing labs in E4B, and will be used in tutorial sessions and for assignments. Assignments may be completed in these rooms. It is most convenient to bring a memory stick when using these computers.

Text book: The recommended text (available from the Co-op Bookshop) is:

You will need a calculator with statistical mode for the final examination.

Software: The statistical software SPSS will be the main package used. In addition, we will be demonstrating applications using other statistical software such as Minitab and Arc. All of this software is available in the computer labs in E4B.

- You may wish to buy a copy of SPSS for home use. The Co-op Bookshop has SPSS version 21 Grad pack, a full version with a one-year licence.

- You may also access SPSS remotely, at no cost, via iLab: https://wiki.mq.edu.au/display/iLab/About

Staff consultation hours: Members of the Statistics Department have consultation hours each week when they are available to help students. These consultation hours are listed on the doors of the Statistics staff located on E4A level 5.

Changes since previous offering: There are no substantial changes.

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Topic</th>
<th>Text chapter</th>
<th>Assessment</th>
</tr>
</thead>
</table>

http://unitguides.mq.edu.au/unit_offerings/7857/unit_guide/print
<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Topic</th>
<th>Page(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 Feb</td>
<td>1</td>
<td>Simple linear regression</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>5 Mar</td>
<td>2</td>
<td>Simple linear regression contd, introduction to multiple linear regression</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12 Mar</td>
<td>3</td>
<td>The model in matrix form, hypothesis tests, residuals, residual & partial regression plots</td>
<td>3,4</td>
<td>Assignment 1 handed out</td>
</tr>
<tr>
<td>19 Mar</td>
<td>4</td>
<td>Diagnostics contd: extreme observations (leverage, DFBETAs, Cook’s distances); collinearity</td>
<td>4, 9</td>
<td></td>
</tr>
<tr>
<td>26 Mar</td>
<td>5</td>
<td>Qualitative variables, ANOVA</td>
<td>5</td>
<td>Assignment 1 handed in</td>
</tr>
<tr>
<td>2 Apr</td>
<td>6</td>
<td>Analysis of change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Apr</td>
<td>7</td>
<td>Transformations</td>
<td>6</td>
<td>Assignment 2 handed out</td>
</tr>
<tr>
<td>Date</td>
<td>#</td>
<td>Topic</td>
<td>Assignment</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>---</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>30 April</td>
<td>8</td>
<td>Interaction and confounding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 May</td>
<td>9</td>
<td>Variable selection, model building</td>
<td>Assignment 2 handed in</td>
<td></td>
</tr>
<tr>
<td>14 May</td>
<td>10</td>
<td>Introduction to generalized linear models; Logistic regression</td>
<td>Assignment 3 handed out</td>
<td></td>
</tr>
<tr>
<td>21 May</td>
<td>11</td>
<td>Logistic regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 May</td>
<td>12</td>
<td>Poisson regression</td>
<td>Assignment 3 handed in</td>
<td></td>
</tr>
<tr>
<td>4 June</td>
<td>13</td>
<td>Revision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Support

Macquarie University provides a range of Academic Student Support Services. Details of these services can be accessed at: http://students.mq.edu.au/support/

UniWISE provides:

- Online learning resources and academic skills workshops http://www.students.mq.edu.au/support/learning_skills/
- Personal assistance with your learning & study related questions.
- The Learning Help Desk is located in the Library foyer (level 2).
- Online and on-campus orientation events run by Mentors@Macquarie.

Student Enquiry Service

Details of these services can be accessed at http://www.student.mq.edu.au/ses/.

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

If you wish to receive IT help, we would be glad to assist you at http://informatics.mq.edu.au/help/.

When using the university’s IT, you must adhere to the Acceptable Use Policy. The policy applies to all who connect to the MQ network including students and it outlines what can be done.
Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.
• Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.

Problem Solving and Research Capability
Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
• Fit a linear model to obtain estimates together with their standard errors in applied problems.
• Analyse the adequacy of a linear model and suggest appropriate modifications when needed.
• Formulate and solve applied problems using linear modelling.
• Use standard statistics packages to carry out these analyses.

Creative and Innovative
Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

• Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
• Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
Fit a linear model to obtain estimates together with their standard errors in applied problems.

Use standard statistics packages to carry out these analyses.

Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Define relevant terminology and describe the main concepts of linear models and simple generalized linear models.
- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcome

- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:
Learning outcomes

- Formulate and solve theoretical problems in linear modelling (using matrix notation when necessary).
- Fit a linear model to obtain estimates together with their standard errors in applied problems.
- Formulate and solve applied problems using linear modelling.
- Use standard statistics packages to carry out these analyses.

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcome

- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Fit a linear model to obtain estimates together with their standard errors in applied problems.
- Formulate and solve applied problems using linear modelling.
- Communicate clearly their knowledge of the subject matter of linear models and their solutions to problems involving linear modelling.