ACST861

Mathematical Theory of Risk

S1 Day 2017

Dept of Applied Finance and Actuarial Studies

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>General Assessment Information</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>6</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>6</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>7</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>8</td>
</tr>
<tr>
<td>Changes since First Published</td>
<td>10</td>
</tr>
</tbody>
</table>

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

http://unitguides.mq.edu.au/unit_offerings/80429/unit_guide/print
General Information

Unit convenor and teaching staff
Unit convenor and lecturer
Jackie Li
jackie.li@mq.edu.au
Contact via Email
E4A 610
Mondays 11am-1pm during teaching weeks or by appointment

Lecturer
David Pitt
david.pitt@mq.edu.au
Contact via Email or phone 9850 8455
E4A 611
Wednesdays 3pm-4pm during teaching weeks.

Angela Chow
angela.chow@mq.edu.au

Credit points
4

Prerequisites
(ACST601 and ACST604) or (STAT680 and STAT683) or (admission to MActPrac post 2014)

Corequisites
STAT806 or STAT810

Co-badged status

Unit description
This unit explores the use of statistical models in insurance: statistical models of the claim frequency and of claim size are studied. These models are a basis for the study of risk theory, ruin theory and reinsurance. Credibility theory is studied as a form of experience rating. Decision theory and simulation are also studied. Students gaining a grade of credit or higher in this unit and ACST862 General Insurance Pricing and Reserving may apply for exemption from subject CT6 of the professional exams of the Institute of Actuaries of Australia.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at http://students.mq.edu.au/student_admin/enrolmentguide/academicdates/
Learning Outcomes

1. Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
2. Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
3. Apply premium principles to price insurance products
4. Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome
5. Apply credibility theory and decision theory to insurance problems

General Assessment Information

It is the responsibility of students to view their marks for each within session assessment on iLearn within 20 working days of posting. If there are any discrepancies, students must contact the unit convenor immediately. Failure to do so will mean that queries received after the release of final results regarding assessment marks (not including the final exam mark) will not be addressed.

Assessment criteria for all assessment tasks will be provided on the unit iLearn site.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>15%</td>
<td>Week 3 and Week 12</td>
</tr>
<tr>
<td>Final exam</td>
<td>70%</td>
<td>Exam period</td>
</tr>
<tr>
<td>Class Test</td>
<td>15%</td>
<td>Week 7</td>
</tr>
</tbody>
</table>

Assignment

Due: **Week 3 and Week 12**
Weighting: **15%**

There are two written assignments due in Week 3 (5%) and Week 12 (10%). Marks will be granted for accuracy and clarity of the work submitted. ACST861 students are required to complete a larger assignment than ACST356 students.
No extensions will be granted. Students who have not submitted the task prior to the deadline will be awarded a mark of zero (0) for the task, except for cases in which an application for disruption to studies is made and approved.

It is the responsibility of students to view their marks for each within session assessment on iLearn within 20 working days of posting. If there are any discrepancies, students must contact the unit convenor immediately. Failure to do so will mean that queries received after the release of final results regarding assessment marks (not including the final exam mark) will not be addressed.

Assessment criteria and submission method will be provided on the unit iLearn site.

This Assessment Task relates to the following Learning Outcomes:

- Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
- Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
- Apply premium principles to price insurance products
- Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome
- Apply credibility theory and decision theory to insurance problems

Final exam

Due: Exam period
Weighting: 70%

A three-hour (3) written exam will be held during the normal university exam period. Questions will cover the entire unit. Marks will be granted for accuracy and clarity of the work shown.

You are permitted one (1) A4 page of paper containing reference material printed on both sides. The material may be handwritten or typed. The page will not be returned to you at the end of the final exam. Non-programmable calculators with no text-retrieval capacity are permitted.

Students who do not attend the final exam will be awarded a mark of zero (0) for the exam, except for cases in which an application for disruption to studies is made and approved.
This Assessment Task relates to the following Learning Outcomes:

- Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
- Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
- Apply premium principles to price insurance products
- Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome
- Apply credibility theory and decision theory to insurance problems

Class Test

Due: **Week 7**

Weighting: **15%**

The class test covers the lecture content in Week 1 to Week 5. Students will have 75 minutes to complete the test. Marks will be granted for accuracy and clarity of the work submitted. It will be conducted in the lecture on Monday 10 April at 8:30am.

You are permitted one (1) A4 page of paper containing reference material printed on both sides. The material may be handwritten or typed. The page will not be returned to you at the end of the class test.

Students who do not attend the class test will be awarded a mark of zero (0) for the test, except for cases in which an application for disruption to studies is made and approved.

It is the responsibility of students to view their marks for each within session assessment on iLearn within 20 working days of posting. If there are any discrepancies, students must contact the unit convenor immediately. Failure to do so will mean that queries received after the release of final results regarding assessment marks (not including the final exam mark) will not be addressed.

Assessment criteria will be provided on the unit iLearn site.
This Assessment Task relates to the following Learning Outcomes:
- Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome

Delivery and Resources
The timetable for classes can be found on the University website at:
https://timetables.mq.edu.au/2017/

Lecture notes are available for download from iLearn. You will need to print the lecture notes and bring them to classes to complete.

From Week 8 onward, the required textbook is:

Other references include:

Students will be required to use iLearn, Excel, PDF, Word, and a non-programmable calculator.

Unit Schedule
Week 1 Loss Models I
Week 2 Loss Models II
Week 3 Loss Models III
Week 4 Loss Models IV
Week 5 Reinsurance and Deductibles
Week 6 Simulation
Week 7 Class Test

http://unitguides.mq.edu.au/unit_offerings/80429/unit_guide/print
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Supplementary exams

Information regarding supplementary exams, including dates, is available at:

http://www.businessandeconomics.mq.edu.au/current_students/undergraduate/how_do_i/special_consideration

Unit guide ACST861 Mathematical Theory of Risk

Week 8 Premium Principles
Week 9 Risk Models
Week 10 Ruin Theory
Week 11 Ruin Theory with Reinsurance
Week 12 Credibility Theory
Week 13 Decision Theory

http://unitguides.mq.edu.au/unit_offerings/80429/unit_guide/print
Student Support
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support
Students with a disability are encouraged to contact the [Disability Service](http://disability.mq.edu.au) who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the [Acceptable Use of IT Resources Policy](http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/). The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Discipline Knowledge and Skills
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
- Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
- Apply premium principles to price insurance products
• Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome
• Apply credibility theory and decision theory to insurance problems

Assessment tasks
• Assignment
• Final exam
• Class Test

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes
• Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
• Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
• Apply premium principles to price insurance products
• Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome
• Apply credibility theory and decision theory to insurance problems

Assessment tasks
• Assignment
• Final exam
• Class Test

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:
Learning outcomes

- Model insurance claims using loss distributions and Bayesian analysis, and develop research skills associated with this learning outcome
- Perform Monte Carlo simulation for insurance models, and develop research skills associated with this learning outcome
- Construct risk models with frequency and severity distributions and apply ruin theory to insurance problems, and develop research skills associated with this learning outcome

Assessment tasks

- Assignment
- Final exam
- Class Test

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/03/2017</td>
<td>The class test will be conducted in the lecture on Monday 10 April at 8:30am.</td>
</tr>
<tr>
<td>23/02/2017</td>
<td>Professor David Pitt's consultation hours are Wednesdays 3pm-4pm during teaching weeks.</td>
</tr>
<tr>
<td>07/02/2017</td>
<td>The class test covers the lecture content in Week 1 to Week 5. Students will have 75 minutes to complete the test.</td>
</tr>
</tbody>
</table>