WMAT135 # **Mathematics 1A** MUIC Term 6 2017 Macquarie University International College # Contents | General Information | 2 | |-----------------------------------|----| | Learning Outcomes | 3 | | General Assessment Information | 3 | | Assessment Tasks | 12 | | Delivery and Resources | 17 | | Unit Schedule | 20 | | Learning and Teaching Activities | 22 | | Policies and Procedures | 23 | | Graduate Capabilities | 27 | | Changes from Previous Offering | 30 | | Course Contact Hours | 30 | | Unit Specific Texts and Materials | 30 | | Changes since First Published | 31 | #### Disclaimer Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication. ### **General Information** Co-badged status Unit convenor and teaching staff Teacher Daniel Lombardo daniel.lombardo@mq.edu.au Contact via By email Macquarie University International College Contact staff member Teacher Sherwin Bagheri sherwin.bagheri@mq.edu.au Contact via By email Macquarie University International College Contact staff member Teacher Budhaditya Majumdar budhaditya.majumdar@mq.edu.au Contact via By email Macquarie University International College Contact staff member Kimberley Duncan kimberley.duncan@mq.edu.au Credit points Prerequisites Corequisites #### Unit description This is the first mainstream university mathematics unit; it is essential for students in engineering and many areas of science. We start with exploring the concept of a function, and continue with the notions of limit and continuity, developed to a reasonably sophisticated level. We then define the concept of derivative as a suitable construct to describe rates of change, develop the differential and integral calculus of functions of a real variable, and discuss some simple differential equations and their role as quantitative models for dynamic processes. We also study the use of vectors in two and three-dimensional Euclidean geometry, and relate this to the algebraic process of solving linear systems in several variables. ### Important Academic Dates Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates # **Learning Outcomes** On successful completion of this unit, you will be able to: Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. Use key concepts of limit and continuity, and compute a wide range of limits. Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### **General Assessment Information** #### Requirements to Pass In order to pass this unit a student must obtain a mark of 50 or more for the unit (i.e. obtain a passing grade P/ CR/ D/ HD). For further details about grading, please refer to Schedule 1 of the Assessment Policy. Students must also pass any hurdle assessments as stipulated in the Assessment Section of this Unit Guide. ### Grading The College will award common result grades as specified in <u>Schedule 1</u> of the <u>Assessment Policy</u>. Students will receive criteria and standards for specific assessment tasks, which will be aligned with the grading descriptors given in Schedule 1. The attainment (or otherwise) of learning outcomes for a unit of study will be reported by grade and mark which will correspond to the Schedule 1 and be as outlined below. | Grade | | Mark
Range | Outcome | Description | |-------|---------------------|---------------|-------------------|--| | HD | High
Distinction | 85-100 | Pass | Provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality, insight or creativity in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application as appropriate to the program. | | D | Distinction | 75-84 | Pass | Provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality or creativity in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the program and the audience. | | CR | Credit | 65-74 | Pass | Provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; convincing argumentation with appropriate coherent justification; communication of ideas fluently and clearly in terms of the conventions of the program. | | P | Pass | 50-64 | Pass | Provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the program; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the program. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes. | | F | Fail | 0-49 | Fail | Does not provide evidence of attainment of learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the program. | | FA | Fail | | Did Not
Attend | Student has failed the compulsory attendance component of assessment | | FH | Fail | 49 | Failed
Hurdle | Student has obtained a raw mark over 50, yet failed all available attempts of at least one hurdle assessment (as described within Schedule 2 of the Assessment Policy). | Final Grades not receiving a mark because the student has withdrawn after the Census Date, not submitted or completed one or more components of the assessment, has been awarded a supplementary assessment or because of an unresolved matter such as allegations of academic misconduct are outlined in Schedule 1. #### Where to find information about assessment General assessment information including the number and nature of assessments, due dates and weightings has been provided in this unit guide. Specific assessment information including assignment instructions, questions, marking criteria and rubrics as well as examples of relevant and related assessment tasks and responses will be available in the Assessment section on iLearn. For units that have final examinations, students may access past final exam papers using MultiSearch. #### **Student Responsibilities** As per the Assessment Policy, students are responsible for their learning and are expected to: - actively engage with assessment tasks, including carefully reading the guidance provided, understanding criteria, spending sufficient time on the task and submitting work on time; - · read, reflect and act on feedback provided; - actively engage in activities designed to develop assessment literacy, including taking the initiative where appropriate (e.g. seeking clarification or advice, negotiating learning contracts, developing grading criteria and rubrics); - provide constructive feedback on assessment processes and tasks through student feedback mechanisms (e.g. student surveys, suggestions for future offerings, student representation on committees); - ensure that their work is their own; and - be familiar with University policy and College procedures and act in accordance with those policy and procedures. #### **Submission of Assessment Tasks** Assessments must be submitted in accordance with instructions provided in this unit guide. Assessment tasks which have not been submitted as required will not be marked; they will be considered a non-submission and zero marks will be awarded for the task. #### **Extensions & Late Submissions** Extensions will only be granted as a result of a
Disruptions to Studies Notification for which special consideration has been awarded. To apply for an extension of time for submission of an assessment item, students must submit their Disruptions to Studies notification via ask.mq.edu.a u. Late submissions without an approved extension are possible but will be penalised at 20% per 24 hour period or thereof up to 4 days (weekend inclusive). Example: An assignment is due at 5:00 pm on a Friday and is marked out of 100 marks. - If a student submits at 5:02 pm on the Friday and no Disruptions to Studies or special consideration is granted, a penalty of 20% of the total marks possible (20 marks) will be deducted from their result. - If the student submits the assignment on Sunday and no Disruptions to Studies or special consideration is granted, then a penalty of 40% (40 marks) will be deducted and so on. - If a student submits an assessment task 5 or more days after the due date and no Disruptions to Studies or special consideration is granted, a record or submission will be made but the student will receive zero marks for the assessment task. Where a student has been granted an extension and submits late, late penalties will be applied following the due date. Please see "In class assessment" section for further information on in class assessments. ### **Retention of Originals** It is the responsibility of the student to retain a copy of any work submitted. Students must produce these documents upon request. Copies should be retained until the end of the grade appeal period each term. In the event that a student is asked to produce another copy of work submitted and is unable to do so, they may be awarded zero (0) for that particular assessment task. Requests for original documentation will be sent to the applicant's student email address within six (6) months of notification by the student. Students must retain all original documentation for the duration of this six (6) month period and must supply original documents to the University within ten (10) working days of such a request being made. #### In Class Assessment Students must bring their Student ID Card to all assessment tasks, including in class assessments and produce this if requested. Students may be refused the opportunity to take an in class assessment task where unable to show their student ID card. Where an assessment is to be held or submitted a scheduled lesson, students must be ready to submit, present or sit the assessment task at the start of the lesson, however not all assessments may commence at the beginning of the lesson. No additional time or adjustment will be made for late arriving students or students not ready to submit an assessment at the start of the lesson and late penalties may apply. For example, if a one hour test or quiz is due to take place in a three hour lesson, the test or quiz may start at any time in the first two hours, so students must be ready to take the test at the beginning of the lesson. No additional time will be given to or adjustment made for students who arrive late. While they may still be permitted to take the test, deepening on the task, the student will have only the remaining time to complete the task. Similarly, where an assessment task is due in a given lesson, late penalties may apply to a student who submits the task at the end of the lesson, depending on submission instructions for the task. #### **Final Examinations** The final examination period is from Thursday Week 6 until Monday of Week 7, including the weekend. This means that examinations and assessments may be held/due on the Saturday during the final examination period and students must be available to take exams and submit assessments on this day. For unit specific details please refer to the Assessment section of this unit guide. The University will publish the <u>College Final Examination Timetable</u> at least 4 weeks before the commencement of the final examination period and students will be able to access their final examination schedule in Week 3 of the Term. **Final Examination Requirements** Schedule 4 of the Assessment Policy explains what students are responsible for: - checking the final examination timetable - knowing the examination location (including seat number allocation) and arriving at allocated examination venue on time. - knowing the structure and format of the examination - adhering to the final examination timetable - ensuring they are available for the full duration of the final examination period and supplementary examination period. Details of the structure and format of the final examination paper will be made available to students via iLearn prior to the start of the final examination period. This detail will include: - a copy of the examination coversheet, giving the conditions under which the examination will be held - information on the types of questions the examination will contain, and - an indication of the unit content the paper may examine. Students must follow directions given by the Final Examination Supervisor. Students will be required to present their Macquarie University Campus Card as photographic proof of identity for the duration of the final examination and may be refused the opportunity to take a final examination where unable to show their student ID card. Students are not permitted to: · enter a final examination venue once one hour from the time of commencement (excluding any reading time) has elapsed - leave a final examination venue before one hour from the time of commencement (excluding any reading time) has elapsed - leave a final examination venue during the last 15 minutes of the examination - be readmitted to a final examination venue unless they were under approved supervision during the full period of their absence - obtain, or attempt to obtain, assistance in undertaking or completing the final examination script - receive, or attempt to receive, assistance in undertaking or completing the final examination script (Unless an application for reasonable adjustment has been approved) - communicate in any way with another student once they have entered the final examination venue #### Missed assessments and examinations The University recognises that students may experience unexpected events and circumstances that adversely affect their academic performance in assessment activities, for example illness. In order to support students who have experienced a serious and unavoidable disruption, the University will provide affected students with an additional opportunity to demonstrate that they have met the learning outcomes of a unit. An additional opportunity provided under such circumstances is referred to as special consideration. In order to be eligible for special consideration students must submit a Disruption to Studies Notification via ask.mq.edu.au within five (5) working days of the commencement of the disruption and attach appropriate supporting evidence. Where special consideration is granted the student will be given and an additional opportunity to demonstrate that they have met the learning outcomes of a unit in the form of an alternative or supplementary assessment task or extension. Please refer to the Disruptions to Studies section under Policies and Procedures below. # Supplementary Tests, Supplementary Examinations and Second Attempts at a Hurdle Assessments Where a student has been granted a supplementary test or examination as a result of a disruption to studies, they will be advised of the time, date and location for the supplementary task. **Supplementary interim assessments** (i.e. assessments held during the term) will be held throughout the term with sittings typically taking place on these days: - Week 3: Wednesday AND/OR Friday - Week 5: Wednesday AND/OR Friday - Week 6: Thursday **The supplementary final examination** period (i.e. for formal, end of term examinations) will span from Monday Week 7 until Friday Week 1 of the subsequent teaching term. Students who have lodged a Disruptions to Studies must be available to undertake examinations during the supplementary examination period. Where a student is eligible for a second attempt at a hurdle assessment, this will typically be organised during the supplementary interim/final examination periods unless stipulated otherwise in the assessment section of the unit guide. For each assessment task affected by a disruption event, there will be a **limit of one extra assessable task or remedy applied**. If a further event affects the student's ability to partake in this assessment activity (i.e. a student cannot undertake the additional or supplementary assessment task as scheduled) the student will need to proceed with the grading of the original attempt or submit a further Disruption notification which would be assessed for a Withdrawal without Academic Penalty outcome. Results for supplementary final examinations may not be available for up to two weeks following the supplementary examination. Students in their final term of study who undertake supplementary final exams and students who apply for special consideration for a unit which is a prerequisite to another unit in their program should note that formal completion of their Program will not be possible until supplementary results are released and this may impact on their ability to enrol in subsequent programs of study on time. ### **Accessing your Results** Students will be able to view their results for internal assessments via the Grades section in iLear n. Grades (e.g. HD, D, CR, P, F) for all assessment tasks will be released to students once marking has concluded. Marks for individual assessments may be released as well. Final results for the unit will be released at 00:01 on Friday of Week 7. Students will be able to view their final result for the unit via eStudent. ### Calculating
your GPA A Grade Point Average (GPA) is a calculation that reflects the overall grades of a student in a coursework program. Please refer to the GPA Calculator. #### **Obtaining Feedback** Teaching staff will provide students with feedback about their academic progress and performance in assessment tasks or a unit of study. Where relevant, other staff such as Senior Teachers, Program Managers and members of the Student Administration and Services Team will provide feedback and advice to students about their performance in a program of study. Feedback may be provided to individual students, a group of students or a whole class and it may be written or verbal in nature. Some examples of feedback include: Teaching staff member reviewing a draft submission and giving a student advice on how to improve their work before making a final submission - Teaching staff member telling a class that they need to improve their editing of grammar in their recently submitted assignment. - Teaching staff member discussing progress of an individual student before census date to allow the student to decide whether they should remain enrolled in the unit. - Online feedback via announcements or forums, an online marking rubric or various iLearn activities employed in a unit. Please note that feedback on written assessments is usually provided via Feedback Studio in iLearn. - · Written marks and comments on a marking sheet or essay. Recorded voice comment provided in response to an essay submitted online. A student receiving advice that they should consider withdrawing from a unit because they have missed too many classes / too much work to be able to catch up or for other reasons. It is a student's responsibility to: - Attend sessions, be present and actively engaged during times when feedback is provided in scheduled class times. - If absent from an in-class feedback session due to unavoidable circumstances, organise an alternative time with the teacher so that they can receive their feedback - Ensure that they have received sufficient feedback prior to their next assessment task and/or final assessment in the unit - Act promptly on feedback provided (e.g. incorporate advice provided into their work and study habits). If you are unsure how or when feedback has been or will be provided, or you feel that feedback provided is not sufficient, you must approach relevant teaching or administrative staff and request additional feedback in a timely manner during the term and prior to any subsequent assessment task or the final assessment task for the unit. Claims that not enough feedback has been provided are not grounds for a grade appeal, especially where a student has not made any effort to approach staff about obtaining additional feedback in a timely manner. Students may seek general feedback about performance in a unit up to 6 months following results release. If you have any problems contacting your teacher you must seek help from administrative staff at the E3A Level 2 Reception. #### **Contacting Teaching Staff Obtaining Help** Students may contact teaching staff at any time during the term by using the contact details provided in this guide. Students should expect a response within 1-2 business days. Teaching staff are unable to accept assessment submissions via email, all assessments must be submitted as outlined in the unit guide. For all university related correspondence, students must use their official Macquarie University student email account which may be accessed via the Macquarie University Student P ortal. Inquiries from personal email accounts will not be attended to. ### **Academic Honesty** Using the work or ideas of another person, whether intentionally or not, and presenting them as your own without clear acknowledgement of the source is called Plagiarism. Macquarie University promotes awareness of information ethics through its <u>Academic Honesty P</u> olicy. This means that: - · all academic work claimed as original must be the work of the person making the claim - · all academic collaborations of any kind must be acknowledged - · academic work must not be falsified in any way - when the ideas of others are used, these ideas must be acknowledged appropriately. All breaches of the <u>Academic Honesty Policy</u> are serious and penalties apply. Students should be aware that they may fail an assessment task, a unit or even be excluded from the University for breaching the Academic Honesty Policy. #### **Turnitin** To uphold principles of Academic Honesty, Macquarie University employs online anti-plagiarism Software called <u>Turnitin</u>. Turnitin compares electronically submitted papers to a database of academic publications, internet sources and other student papers that have been submitted to the system to identify matching text. It then produces an Originality Report which identifies text taken from other sources, and generates a similarity percentage. Teaching staff will use the report to judge whether plagiarism has occurred and whether penalties should apply for breaches of the Academic Honesty Policy. All text based assessments must be submitted through Turnitin as per instructions provided in the unit guide. It is the student's responsibility to ensure that work is submitted correctly prior to the due date. This includes verifying that correct files have been submitted as no special consideration will be given to students who have uploaded incorrect documents. No hard copies of assessments will be accepted and only Turnitin records will be taken as records of submission. Multiple submissions may be possible via Turnitin <u>prior</u> to the final due date and time of an assessment task and originality reports may be made available to students to view and check their work. There is no set percentage which indicates whether plagiarism has occurred; all identified matching text should be reconsidered carefully. If plagiarism has occurred or is suspected and resubmission is possible prior to the due date, students are advised to edit their work before making a final submission. Help may be sought from teaching staff. Students may also access research resources provided by the library or Learning Skills. Students should note that the system will not immediately produce the similarity score on a second or subsequent submission - it will take at least 24-36 hours for the report to be generated. This may be after the due date so students should plan any resubmissions carefully. Please refer to these instructions on <u>how to submit your assignment through Turnitin</u> and access similarity reports and feedback provided by teaching staff. Should you have questions about Turnitin or experience issues submitting through the system, you must inform your teacher immediately. If the issue is technical in nature may also lodge a One of the IT help page. ### Submission of Drafts through Turnitin. In some instances students may be required to submit drafts of written work via Turnitin **prior to the due date of the assessment** task so that they can receive feedback prior to making a final submission. If the student does not make a final submission prior to the due date, their draft will be counted as the final submission or late penalties applied. ### **Assessment Tasks** | Name | Weighting | Hurdle | Due | |-----------------|-----------|--------|--------------------------------| | Diagnostic Test | 0% | No | Week 1, Lesson 1 | | Assignments | 30% | No | Wk 2&4 Thu 11pm, Wk 6,Wed 11pm | | Quizzes | 20% | No | Wk 1(L7), 2(L7), 5(L1), 6(L1) | | Class Test | 10% | No | Week 3, Lesson 7 | | Exam | 40% | No | MUIC Examination Period | ### **Diagnostic Test** Due: Week 1, Lesson 1 Weighting: 0% Students will be required to take a one-hour paper-based diagnostic test in class, in Week 1, Lesson 1. The test will include short answer questions. Details of the assessment task will be provided in the first lesson. This task will be used to identify student development needs and provide students with feedback on how to improve their mathematical skills. The results of the diagnostic test will not count towards the final mark for the unit. However students should note that implementing feedback and strategies suggested following the diagnostic test could assist them to achieve better results in the unit. This is a closed book test. Students are not allowed to bring any calculators, formula sheets, notes, textbooks or any other aids into the examination venue. This is an individual task. On successful completion you will be able to: Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### **Assignments** Due: Wk 2&4 Thu 11pm, Wk 6, Wed 11pm Weighting: 30% There are three assignments in this unit. All assignments are individual assessment tasks. The students will submit an electronic copy of their solutions to the Turnitin link
provided in iLearn. Students can submit scanned copies of their hand-written work. The first assignment has 5 questions and will be released in iLearn in Week 1, Lesson 1. Students must submit their solutions via iLearn by Thu of Week 2, 11pm. The first assignment's weighting is 10%. The second assignment has 5 questions and will be released in iLearn in Week 3, Lesson 1. Students must submit their solutions via iLearn by Thu of Week 4, 11pm. The second assignment's weighting is 10%. The third assignment has 5 questions and will be released in iLearn in Week 5, Lesson 1. Students must submit their solution via Turnitin in iLearn by Wednesday of Week 6, 11pm. The third assignment's weighting is 10%. Feedback will be given via iLearn and in class. Please refer to late submission section above. Zero marks will be awarded to any work that is illegible or which cannot be viewed/downloaded, so it is the student's responsibility to ensure that they submit work correctly. On successful completion you will be able to: Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### Quizzes Due: Wk 1(L7), 2(L7), 5(L1), 6(L1) Weighting: 20% Quizzes will assess course work done throughout the Term. Students will take 30 minute paper-based quizzes in Weeks 1, 2 and 5. The Quiz Schedule is as follows: Quiz 1 - Week 1, Lesson 7 Quiz 2 - Week 2, Lesson 7 Quiz 3 - Week 5, Lesson 1 Quiz 4 - Week 6, Lesson 1 Students can attempt the quizzes only once. Each quiz is worth 5%. Together the quizzes will contribute 20% to your final mark in this unit. They are individual assessment tasks. Feedback will be provided via Gradebook and in class within a week. If students miss a quiz, they should refer to the Disruption to Studies section above. On successful completion you will be able to: - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - · Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### Class Test Due: Week 3, Lesson 7 Weighting: 10% In week 3, Lesson 7 there will be a 45-minute closed book, paper-based class test which may cover any of the topics covered up until the time of the test. This is an individual task. Feedback will be provided in class and via Gradebook. Students are allowed to bring non-programmable calculators, but calculators may not be shared among students. Please note these will not be provided at the examination venue. Students are not allowed to bring mobile phones and other electronic devices; notes and course materials; calculators with a "run", "exe" or "calc" key; graphics calculators; programmable calculators; dictionaries (paper/electronic). If students miss this test they will need to refer to the Disruptions to Studies section above. On successful completion you will be able to: - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### Exam Due: MUIC Examination Period Weighting: 40% This is a 2 (two) hours plus ten minutes, closed book, paper-based final exam containing short answer questions, and an individual assessment task which may cover any of the topics in the unit. Students are allowed to bring non-programmable calculators, but calculators may not be shared among students. Please note these will not be provided at the examination venue. Students are not allowed to bring mobile phones and other electronic devices; notes and course materials; calculators with a "run", "exe" or "calc" key; graphics calculators; programmable calculators; dictionaries (paper/electronic). Details of the structure and format of the final examination paper will be made available to students prior to the start of the final examination period. The final examination period spans from Thursday Week 6 until Monday of Week 7, weekend inclusive. This means that examinations and assessments may be held/due on the Saturday during the final examination period and students must be available to take exams. If students miss the final exam, they should refer to the Disruption to Studies section above. On successful completion you will be able to: - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. # **Delivery and Resources** #### **Term Dates & College Calendar** Details of key dates during the term can be found on the Important Dates calendar. ### **Enrolment and Timetables** General timetable information is available via Macquarie University's Timetable page. Students will be able to enrol in units and register for classes via <u>eStudent</u> and also view their personal timetable. It is the student's responsibility to ensure that classes they have registered for do not clash. Students are only permitted to attend classes in which they have registered via eStudent, unless they have written approval from the Students Services and Administration Manager. To seek approval, students must email muic@mq.edu.au or speak to a member of the Student Services and Administration Team at E3A Level 2 Reception. Approval will only be granted in exceptional circumstances. The last day to enrol in units is Tuesday of Week 1. Swapping groups is not possible after the enrolment period has concluded. The last day to enrol and register into classes is Tuesday of Week 1 and this must be finalised by the student in eStudent by the end of the day. #### **Guest Lecturer Presentations and Workshops** One or two Guest Lecturer Presentations and/or workshops may be scheduled during the term. These sessions will take place outside of regular class time, usually in a lecture theatre on campus. In the session a speaker (usually an expert or well-known academic in the field) will give a presentation on a particular topic related to the unit or field. While attendance at guest lectures is not compulsory, and content covered is not examinable unless
covered in regular classes, students are strongly encouraged to attend these sessions as they will: - help them to engage with and broaden their understanding of the discipline - · contextualise content covered in class - · provide a practical insight into recent developments and work in the field - · provide opportunities for networking - · provide experience of what lectures are like Specific details including time and venue for Guest Lecturer Presentations and workshops will be posted in iLearn announcements and provided in class. Recordings of these sessions may also be made available to students via iLearn. ### **Attendance Requirements – All Students** All students are expected to attend 100% of scheduled class time. Attendance will be monitored in each lesson & students will be able to see their current attendance percentage to date and potential attendance percentage for each unit they have enrolled in via iLearn. - Current attendance Percentage will reflect the percentage of classes a student has attended so far (based only on the lessons held to date). - Potential Attendance Percentage will reflect the percentage of classes a student can potentially attend by the end of the term, taking into consideration lessons attended and assuming the student also attends all future lessons scheduled (based only on the total number of lessons in the Term). Where a student is present for a part of a lesson (for example arrives late, leaves early, leaves the class frequently or for lengthy periods, engages in inappropriate or unrelated activities or does not participate actively in the majority of the lesson) the teacher reserves the right to mark a student absent for that part of the lesson. In cases of unavoidable non-attendance due to illness or circumstances beyond their control, students should lodge a <u>Disruption to Studies</u> Notification via <u>ask.mq.edu.au</u> within 5 working days and supply relevant supporting documentation, even if they have not missed a formal assessment task. This will ensure that that appropriate records of unavoidable absences can be kept. ### **Public Holidays and Make-up Lessons** If any scheduled class falls on a public holiday a make-up lesson may be scheduled on an alternate day, usually on a Saturday or a weekday at a time when students do not have other classes scheduled. In Term 6, October 2 is Labour Day which is a public holiday. If you have a class scheduled on this day, you will need to make sure you read the announcements on iLearn and check your student email. Students should note that they must attend a scheduled make-up class as this forms an integral part of the curriculum. Attendance will be taken for any scheduled make-up lessons. Where a make-up lesson is scheduled, students will be informed in class and via iLearn, usually in the first week of Term and the week prior to the make-up lesson. Students should check their iLearn announcements and student email for details. If appropriate, teaching staff may instead organise an online make-up lesson requiring students to complete additional activities outside of class. Students will be informed of any such arrangements in class and/or via iLearn. ### **Technology Used and Required** - Access to internet (Available on Campus using Macquarie OneNet and in designated E3A Self-Access Computer Laboratories) - iLab iLab is Macquarie University's personal computer laboratory on the Internet, enabling students to use the Microsoft Windows applications they require to do their university work from anywhere, anytime, on anything. - Access to iLearn - Access to Macquarie University Library catalogue (MultiSearch) - Access to Microsoft Office Suite (available in E3A Self-Access Computer Laboratories and via iLab) #### iLearn <u>iLearn</u> is Macquarie's online learning management system and a principal teaching and learning resource which will be used throughout the term. Students must access iLearn at least 3 times per week to access important information including: - Announcements and News Forums Teaching staff will communicate to the class using iLearn announcements. Announcements may also be emailed to students' Macquarie University email address but students should check the News Forum regularly. - Attendance current and potential attendance percentage for the Term. - · Unit Guide and staff contact details - Set unit readings available through MultiSearch (library). - · Lesson materials and recordings where available - Learning and teaching activities and resources, questions and solutions - Assessment instructions, questions, marking criteria and sample tasks - · Assessment submission links such as Turnitin - Links to support materials and services available at the University - Evaluation Surveys for the unit For any resource related iLearn questions contact your teacher. For any technical or support issues using iLearn, please contact the IT helpdesk (Ph. 02 9850 4357) or lodge a ticket using neHelp. #### **Useful Study Resources** <u>StudyWise</u> is an iLearn resource created by Learning Skills, which is specifically designed to help you to manage your studies, strengthen your study techniques, write effective assignments and improve your English language proficiency. Once you enrol in StudyWISE, you can access it from your iLearn course list under the category "Student Support". <u>InfoWise</u> will help you improve your research skills by teaching you how to use MultiSearch, decode citations, identifying key search terms and use advanced search techniques. <u>Lib Guides</u> provide students with links to electronic sources and websites that are good starting points for research in different fields or disciplines. MultiSearch will connect you to Macquarie University Library and allow you to search library resources, databases, unit readings and past exam papers Academic Language and Learning Workshops are designed to help you with Study Skills, Assignment Writing, Referencing and Academic Language. Research resources provide information about: - Researching for your assignments - How to manage your references - · Referencing style guides - · Subject and research guides Numeracy Support is provided by the Numeracy Centre. Students who can attend these support classes on a drop in basis as required. <u>Your Tutor</u> is a one-to-one personal study support service which may be made available via Week 0 in your iLearn unit. If available, you may use this service to get online study help and/or feedback on your assignment within 24 hours. If you are unsure whether this service is available in your unit or how to use this service, please check with your teacher. ### **Unit Schedule** | Week/
Lesson | Topic/Content
Covered | Assessment Task | |-----------------|--|-----------------| | 1.1 | Introduction to unit Review of assumed material Sets | | | 1.2 | Sets | | | 1.3 | Functions | | | 1.4 | Functions | | | 1.5 | Functions | | | 1.6 | Trigonometry | | | 1.7 | Trigonometry | Quiz 1 | | 2.1 | Limits | | | Week/ | Topic/Content | | |--------|---|---| | Lesson | Covered | Assessment Task | | 2.2 | Limits | | | 2.3 | Continuity | Assignment 1 due on Thursday, 11 pm | | 2.4 | Continuity | | | 2.5 | Differentiation: Rates and definition | | | 2.6 | Differentiation: Properties and implicit | | | 2.7 | Differentiation: Implicit | Quiz 2 | | 3.1 | Differentiation: The mean value theorem, applications | | | 3.2 | Differentiation: Rolle's theorem, applications | | | 3.3 | Differentiation: applications | | | 3.4 | Integration: accumulated change, numerical techniques | | | 3.5 | Integration: properties, techniques | | | 3.6 | Integration: techniques | | | 3.7 | Integration: techniques | Class test | | 4.1 | Integration: techniques | 2 October Monday is the Labour Day public holiday. Make-up classes will be held on 7 October Saturday for affected classes. | | 4.2 | Integration: techniques, applications | | | 4.3 | Integration: techniques, applications | | | 4.4 | Integration: techniques, applications | | | 4.5 | Vectors and Geometry | Assignment 2 due on Thursday, 11 pm | | Week/
Lesson | Topic/Content
Covered | Assessment Task | |-----------------|--|---| | 4.6 | Vectors and Geometry | | | 4.7 | Vectors and Geometry | | | 5.1 | Systems of Linear Equations | Quiz 3 | | 5.2 | Systems of Linear Equations | | | 5.3 | Systems of Linear Equations | | | 5.4 | Systems of Linear Equations | | | 5.5 | Differential equations:
Introduction, separable | | | 5.6 | Linear first order differential equations | | | 5.7 | Linear first order differential equations | | | 6.1 | The Binomial Theorem | Quiz 4 | | 6.2 | Mathematical Induction | | | 6.3 | Revision | Assignment 3 due on Wednesday 11 pm | | 6.4 | Revision | | | 6.5 | Revision | | | 6.6 | Revision | | | 6.7 | Revision | Final Exam scheduled during the Final Examination period. | # **Learning and Teaching Activities** ### Lessons Lessons will include a mixture of learning and teaching activities. New content and topics will be presented in lessons, and students will be given problems, practice questions and other interactive activities to apply the knowledge and the skills gained in the lesson. Students will be required to take notes, complete set class tasks and engage in discussion and individual and group activities. In class, specific time may be dedicated to work on assessment tasks and students will be given guidance and feedback to complete these. Certain lessons may be dedicated to independent research and reading related to the unit whether in the classroom or a computer lab. ### **Active Participation** Students will be required to not only
attend but also actively participate in lessons. Active participation entails: - active engagement in class activities - contribution to class discussions by asking and answering questions - coming to class prepared and having completed required prereadings and activities - completion of set class and homework activities - collaboration with other students - adhering to Macquarie University Student Codes of Conduct ### **Numeracy Centre** The Numeracy Centre is located in C5A 225 and has two major aims: - To improve students' access to mathematics and numeracy-based courses, such as statistics, at undergraduate and postgraduate level. - To improve students' completion rates of mathematics and numeracy-based courses. In striving to achieve these aims, the Numeracy Centre offers a number of services including a free drop-in service, weekly workshops for some first year courses, bridging programs and preparatory courses at the beginning of each semester and some on-line resources. WMAT135 students are encouraged to seek support and/or attend relevant workshops at the Numeracy Centre ### **Policies and Procedures** Macquarie University policies and procedures are accessible from <u>Policy Central</u>. Students should be aware of the following policies in particular with regard to Learning and Teaching: Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html Assessment Policy http://mq.edu.au/policy/docs/assessment/policy_2016.html Grade Appeal Policy http://mq.edu.au/policy/docs/gradeappeal/policy.html Complaint Management Procedure for Students and Members of the Public http://www.mq.edu.au/policy/docs/complaint_management/procedure.html Disruption to Studies Policy (in effect until Dec 4th, 2017): http://www.mq.edu.au/policy/docs/disruption studies/policy.html Special Consideration Policy (in effect from Dec 4th, 2017): https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policies/special-consideration In addition, a number of other policies can be found in the <u>Learning and Teaching Category</u> of Policy Central. ### Student Code of Conduct Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/ ### Results Results shown in *iLearn*, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <a href="extraction-color: blue} eStudent. For more information visit <a href="extraction-color: blue} ask.m q.edu.au. #### **Academic Honesty** Using the work or ideas of another person, whether intentionally or not, and presenting them as your own without clear acknowledgement of the source is called Plagiarism. Macquarie University promotes awareness of information ethics through its <u>Academic Honesty P</u> <u>olicy</u>. This means that: - all academic work claimed as original must be the work of the person making the claim - · all academic collaborations of any kind must be acknowledged - · academic work must not be falsified in any way - when the ideas of others are used, these ideas must be acknowledged appropriately. All breaches of the <u>Academic Honesty Policy</u> are serious and penalties apply. Students should be aware that they may fail an assessment task, a unit or even be excluded from the University for breaching the Academic Honesty Policy. #### **Assessment Policy** Students should familiarise themselves with their responsibilities under the Assessment Policy, and notably Schedule 4 (Final Examination Requirements). ### **Disruptions to studies** The <u>Disruption to Studies Policy</u> applies only to *serious and unavoidable* disruptions that arise after a study period has commenced. Students with a pre-existing disability/health condition or prolonged adverse circumstances may be eligible for ongoing assistance and support. Such support may be sought through <u>Campus Wellbeing</u> and <u>Support Services</u>. To be eligible for Special Consideration, a student must notify the University of a *serious and unavoidable* disruption within five (5) working days of the commencement of the disruption (Disruption to Studies notification). All Disruption to Studies notifications are to be made online via the University's Ask MQ system. A Disruption to Studies notification must be supported by documentary evidence. Students should note that in cases of medical disruptions they must see a professional authority as outlined in the <u>Disruptions to Studies Supporting Evidence Schedule</u> and present a <u>Professional Authority Form</u>. The PAF is the preferred form of evidence for medical/psychological /mental health disruptions. However, health documents that clearly indicate the duration and specific nature of impact on studies will also be considered as evidence. Overseas students may use their OSHC insurance for the purpose of seeing a registered healthcare professional. In submitting a <u>Disruption to Studies Notification</u>, a student is acknowledging that they may be required to undertake additional work. The time and date, deadline or format of any required extra assessable work as a result of a disruption to studies notification is not negotiable and in submitting a disruption to studies notification, a student is agreeing to make themselves available to complete any extra work as required. This means that as a result of special consideration being awarded, a student may be required to complete a different type of assessment for example an exam instead of a presentation or vice versa. Macquarie University operates under a 'Fit to Sit' model. This means that in sitting an exam and/ or in-class test or otherwise submitting an assessment, a student declares themselves fit to do so. Therefore, if a student is feeling unfit to sit the exam or test, or otherwise submit the assessment (as the case may be), they should not do so. If a student sits an exam or test, or otherwise submits an assessment, knowing that they are unfit to do so, they will not be granted Special Consideration. It is the responsibility of the student to determine whether they are fit to sit an examination or test or otherwise submit an assessment, or whether a Disruption to Studies claim should be submitted for non-participation. The student will retain all original documentation submitted regarding the disruption, and must understand that this may be requested by the University at any time. In this event, students will be provided 10 business days to submit the original documentation. Please refer to the Disruption to Studies Policy for further details. #### **Final Examination Script Viewings** A student may request to view their final examination script once results have been released but scripts remain the property of Macquarie University. Students should view their final examination paper prior to submitting a grade appeal, if this is relevant to their case. The viewing will be conducted in a secure location under supervision. To request a final examination script viewing, please email: muic@mq.edu.au and write 'script viewing' in the subject heading. Scripts may be reviewed for up to 6 months following the results release date for the relevant Term. #### **Grade Appeals** A student who has been awarded a final grade for a unit has the right to appeal that grade as outlined in the <u>Grade Appeal Policy</u>. Grade appeals apply to the final mark and grade a student receives for a unit of study. They do not apply to results received for individual assessment tasks. Grade appeals must be submitted via <u>ask.mq.edu.au</u> within 20 working days from the published result date for the relevant unit. Before submitting a Grade Appeal, please ensure that you read the <u>Grade Appeal Policy</u> and note valid grounds for appeals. Students are expected to seek feedback on individual assessment tasks prior to the award of a final grade. Students also have the right to request generic feedback from the teaching staff on their overall performance in the unit, including in a final examination. This can be done at any time in the six month period starting from the day on which the final grade of the relevant unit is published. #### **Course Progression** The College closely monitors students' academic progress as per the <u>Progression Policy</u> for Programs delivered by Macquarie University International College. To maintain Satisfactory Academic Progress, a student must successfully complete (pass) 50% or more of their enrolled units in a Term of study. To successfully complete a unit, students must obtain a passing grade and meet any other requirements to pass listed in the unit guide. Students who fail to make Satisfactory Academic Progress will be classified as "at risk" and will be notified in writing. At-risk students may be required to undergo academic counselling, undertake certain initiatives or have conditions placed upon their enrolment to help them make satisfactory progress. Students must also pass 50% or more of the units in 2 or more terms in order to meet Minimum Rate of Progress (MRP) requirements. A student is deemed not to be making Minimum Rate of Progress if they fail more than 50% of their enrolled units in two consecutive Terms of study, or if they have failed more than 50% of their units after studying two or more terms. Any domestic student who has been identified as not meeting Minimum Rate of Progress requirements will be issued
with an Intention to Exclude letter and may subsequently be excluded from the program. Any international student who has been identified as not meeting MRP will be subject to exclusion from the program and be issued with an Intention to Report letter and may subsequently be reported to the Department of Immigration and Border Protection (DIBP) for not meeting visa requirements. International students must comply with the Progression Policy of the College in order to meet the conditions of their visa. # Student Support Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/ ### **Learning Skills** Learning Skills (<u>mq.edu.au/learningskills</u>) provides academic writing resources and study strategies to improve your marks and take control of your study. - Workshops - StudyWise - Academic Integrity Module for Students - Ask a Learning Adviser ### Student Services and Support Students with a disability are encouraged to contact the <u>Disability Service</u> who can provide appropriate help with any issues that arise during their studies. ### Student Enquiries For all student enquiries, visit Student Connect at ask.mq.edu.au ### IT Help For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/. When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students. # **Graduate Capabilities** ### Discipline Specific Knowledge and Skills Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems. This graduate capability is supported by: ### **Learning outcomes** - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### Assessment tasks - · Diagnostic Test - Assignments - Quizzes - Class Test - Exam ### Critical, Analytical and Integrative Thinking We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy. This graduate capability is supported by: ### Learning outcomes - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### **Assessment tasks** - Diagnostic Test - Assignments - Quizzes - · Class Test - Exam ### Problem Solving and Research Capability Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations. This graduate capability is supported by: ### Learning outcomes - Use a range of relevant algebraic techniques to demonstrate a well developed knowledge of elementary principles, concepts and techniques of calculus, and behaviour of the standard elementary mathematical functions under these operations. - · Use key concepts of limit and continuity, and compute a wide range of limits. - Apply the key concept of integration as accumulated change to calculate integrals of a wide range of functions, using the relevant methods and solve a broad range of mathematical problems involving integration. - Explain the key concept of derivative as a rate of change; calculate derivatives for a wide range of functions, using the relevant methods; solve a broad range of mathematical problems involving differentiation. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. #### Assessment tasks - · Diagnostic Test - Assignments - Quizzes - Class Test - Exam ### **Effective Communication** We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate. This graduate capability is supported by: ### Learning outcomes - · Use key concepts of limit and continuity, and compute a wide range of limits. - Construct elementary mathematical arguments, using the concepts and techniques studied in this unit. - Describe how the concepts and techniques studied in this unit apply to other disciplines, in particular in Physics and Engineering. - Express mathematical ideas clearly and logically using discipline specific terminology and provide appropriate justification for your conclusions. ### Assessment tasks - Diagnostic Test - Assignments - Quizzes - · Class Test - Exam # **Changes from Previous Offering** The diagnostic test assessment has been added. The schedule of lessons changed. ### **Course Contact Hours** Weekly face to face contact for this unit will be 14 hours (84 hours per term). There will be 7 lessons per week consisting of 7 X 2-hour classes. # **Unit Specific Texts and Materials** The following text has been prescribed for this unit: Hughes-Hallett, Gleason & McCallum. 2013 (7th edition). Calculus - Single & Multivariable. Wiley. ISBN: 9781119320494 Texts will be available for purchase from the Co-Op Bookshop located in the Campus Hub Building C10A, Level One, Phone: 8986 4000. All students should ensure that they have access to the prescribed text(s) from the start of the Term as failure to do so could jeopardise their academic progress in this unit. Other editions or formats of the above resource(s) may be acceptable, but students must consult teaching staff prior to purchasing these. # **Changes since First Published** | Date | Description | |------------|--| | 08/09/2017 | Delivery and Resources section has been updated. |