

ECHE234

Teaching and Learning Mathematics, Science and Technology 2

S2 External 2018

Department of Educational Studies

Contents

General Information	2
Learning Outcomes	3
General Assessment Information	3
Assessment Tasks	8
Delivery and Resources	9
Unit Schedule	10
Policies and Procedures	12
Graduate Capabilities	13

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff

Unit convenor / Mathematics convenor

Kelly Johnston

kelly.bittner@mq.edu.au

Contact via email

264 29 Wally's Walk

Science convenor

Anne Forbes

anne.forbes@mq.edu.au

Contact via email

240 29 Wally's Walk

Technology convenor

Garry Falloon

garry.falloon@mq.edu.au

Contact via email

368 29 Wally's Walk

Credit points

3

Prerequisites

ECH232

Corequisites

Co-badged status

Unit description

This unit has a particular focus on the Statistics and Probability, Measurement and Geometry and Number strategies for K-6 students. The unit also addresses the strands of made environments and natural environments and focuses on the sub strands physical world, material world, built environments, products, information and material world. Here the importance of environmental education and sustainability for the future is also addressed, as well as effective technology integration. The unit builds on knowledge gained in ECH232 and continues to develop students' understanding of the processes of learning, teaching and assessing mathematics, science and technology. This unit is the second in a series of core units across these KLAs.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.

Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.

Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.

Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.

Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.

Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.

Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

General Assessment Information

General assessment information

Assignment extensions and late penalties

Applications for extensions must be made via AskMQ at https://ask.mq.edu.au as a Special Consideration request before the submission date. Students who experience a disruption to their studies through ill-health or misadventure are able to apply for this request. Extensions can only be granted if they meet the Special Considerations policy and are submitted via https://ask.mq.edu.au/. This will ensure consistency in the consideration of such requests is maintained.

In general, there should be no need for extensions except through illness or misadventure that would be categorised as unavoidable disruption according to the University definition of same, see: https://students.mq.edu.au/study/my-study-program/special-consideration

Late submissions without extension will receive a penalty of 5% reduction of the total possible

mark for each day late (including weekends and public holidays). You are reminded that submitting even just 1 day late could be the difference between passing and failing a unit. Late penalties are applied by unit convenors or their delegates after tasks are assessed.

No assessable work will be accepted after the return/release of marked work on the same topic. If a student is still permitted to submit on the basis of unavoidable disruption, an alternative topic may be set.

Students should keep an electronic file of all assessments. Claims regarding "lost" assessments cannot be made if the file cannot be produced. It is also advisable to keep an electronic file of all drafts and the final submission on a USB untouched/unopened after submission. This can be used to demonstrate easily that the assessment has not been amended after the submission date.

Requesting a remark of an assignment

If you have evidence that your task has been incorrectly assessed against the grade descriptors you can request a re-mark. To request a re-mark you need to contact the unit convenor within 7 days of the date of return of the assignment and provide a detailed assessment of your script against the task criteria. Evidence from your assignment must be provided to support your judgements.

Note: Failed assessments can not be re-submitted as they are all double-marked as a part of the moderation process.

Please note: The outcome of a re-mark may be a higher/lower or unchanged grade. Grades are standards referenced and effort is NOT a criterion.

Units with Quiz Assessments

Online quizzes are an individual assessment task and **MUST BE COMPLETED by each student individually.** Similarities in responses between students will be checked and investigated for possible collusion. Please see the Academic Honesty Handbook for more information.

Assessment Presentation & Submission Guidelines

Please follow these guidelines when you submit each assignment:

- Allow a left and right-hand margin of at least 2cm in all assignments.
- Please type all assignments using 12-point font and 1.5 spacing.
- All assessments must be submitted through Turnitin in .doc or .pdf format
- It is the onus of the student to ensure that all assessments are successfully submitted through Turnitin.

Faculty assignment cover sheets are NOT required.

Draft Submissions & Turnitin Originality Reports

- Students may use Turnitin's Originality Report as a learning tool to improve their academic writing if this option is made available in the unit.
- Students are strongly encouraged to upload a draft copy of each assessment to Turnitin
 at least one week prior to the due date to obtain an Originality Report.
- The Originality Report provides students with a similarity index that may indicate if
 plagiarism has occurred. Students will be able to make amendments to their drafts prior
 to their final submission on the due date.
- Generally, one Originality Report is generated every 24 hours up to the due date.

Please note:

- Students should regularly save a copy of all assignments before submission,
- Unless there are exceptional circumstances, no assessment will be accepted after the date that the assessment has been returned to other students.
- Students are responsible for checking that their submission has been successful and has been submitted by the due date and time.

University policy on grading

Criteria for awarding grades for assessment tasks

Assignments will be awarded grades ranging from HD to F according to guidelines set out in the University's Grading Policy. The following descriptive criteria are included for your information.

Note: If you fail a unit with a professional experience component the fail grade will be on your transcript irrespective of the timing of when the placement takes place.

Criteria for awarding grades in the unit

Students will be awarded grades ranging from HD to F according to guidelines set out in the policy: https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policies/assessment-in-effect-from-session-2-2016

The following generic grade descriptors provide university-wide standards for awarding final grades.

|--|

HD (High Distinction)	Provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application as appropriate to the discipline.
D (Distinction)	Provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.
Cr (Credit)	Provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; convincing argumentation with appropriate coherent justification; communication of ideas fluently and clearly in terms of the conventions of the discipline.
P (Pass).	Provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes
F (Fail)	Does not provide evidence of attainment of learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.

Withdrawing from this UG Unit

If you are considering withdrawing from this unit, please seek academic advice by writing to https://ask.mq.edu.au before doing so as this unit may be a co-requisite or prerequisite for units in the following semesters and may impact on your progression through the degree.

Other important policies

Macquarie University policies and procedures are accessible from <u>Policy Central</u>. Students should be aware of the policies listed in this/the Unit Guide with regard to Learning and Teaching.

For this Unit, students must also be aware of the following specific requirements:

- Students must meet the mandatory requirements to undertake placements as specified in this/ the Unit Guide. These may include both University requirements and mandatory requirements specified by the accrediting authority such as the Working with Children check.
- Macquarie University operates under a 'Fit to Sit' model as specified in the University's <u>Special Consideration Policy</u>. For this Unit, this means that, when undertaking a placement, a student is declaring that they are fit to do so. It is the responsibility of the student to determine whether they are fit to undertake a placement. Therefore, if a student is feeling unfit to undertake a placement, they should not do so.
- If a Student is identified by the Unit Convenor as being 'At Risk', the <u>Department's 'At Risk' procedure</u> will be activated and they will not be able to withdraw themselves from this Unit.

- The timing of placements can vary. For placements early in the Session, Fail grades may be approved by the University prior to the end of Session for students who do not meet the placement expectations of the Unit.

Other policies that relate to Learning and Teaching (see Policy central):

Academic Honesty Policy

Assessment Policy

Grade Appeal Policy

Complaint Management Procedure for Students and Members of the Public

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mg.edu.au/support/student conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <a href="extraction-student-stud

Student support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student enquiry service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity support

Students with a disability are encouraged to contact the <u>Disability Service</u> who can provide appropriate help with any issues that arise during their studies.

IT help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Assessment Tasks

Name	Weighting	Hurdle	Due
Online Quiz	20%	No	17/08/18
Planning for Mathematics	30%	No	14/09/18
Science and Technology Unit	50%	No	09/11/2018

Online Quiz

Due: **17/08/18** Weighting: **20%**

Online quiz with 20 multiple choice questions based on the mathematics, science and technology content covered in Module 1.

On successful completion you will be able to:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Planning for Mathematics

Due: **14/09/18** Weighting: **30%**

This task requires students to design an information guide on mathematical teaching and learning for a practitioner audience.

1200 words.

On successful completion you will be able to:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Science and Technology Unit

Due: **09/11/2018** Weighting: **50%**

Students will plan a sequence of science learning experiences utilising digital resources.

On successful completion you will be able to:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Delivery and Resources

Attendance for undergraduate units

All tutorials begin in the first week of classes.

Activities completed during weekly tutorials (internal) or on campus days (external) are essential for building the core knowledge and/or skills required to demonstrate the learning outcomes of this unit [and to meet the AITSL Graduate Teacher Standards and/or ACECQA requirements]. Attendance at all tutorials or on campus days is expected and the roll will be taken.

Students are required to attend the tutorial in which they are enrolled. Any changes to tutorial enrolments must be completed officially through e-student. Please do not contact the unit convenor requesting a change.

Unit Expectations

- Students are expected to read weekly readings before completing tasks and attending tutorials
- Students are expected to listen/attend weekly lectures before completing tasks and attending tutorials

Note: It is not the responsibility of unit staff to contact students who have failed to submit assignments. If you have any missing items of assessment, it is your responsibility to make contact with the unit convenor.

Electronic Communication

It is the student's responsibility to check all electronic communication on a regular weekly basis. Communication may occur via:

- · Official MQ Student Email Address
- The Dialogue function on iLearn
- Other iLearn communication functions

Unit Schedule

Week	Group A	Group B	Group C
First module			
Week 1 - 30 July	Math 1	Science 1	Tech 1
Week 2- 6 August	Tech 1	Math 1	Science 1
Week 3- 13 August	Science 1	Tech 1	Math 1
Second module			

Week 4 – 20 August	Math 2	Science 2	Tech 2		
Week 5 – 27 August	Tech 2	Math 2	Science 2		
Week 6 - 3 Sept	Science 2 Tech 2 Math 2				
First on campus day – Saturda	First on campus day – Saturday 8 September				
Third Module					
Week 7 - 10 Sept	Math 3	Science 3	Tech 3		
Mid-semester break - 17 September – 28 September 2018					
Week 8 – 1 October	No Classes – public holiday				
Week 9 – 8 October	Tech 3	Math 3	Science 3		
Second on campus day – Saturday 13 October					
Week 10 -15 October	ECHP223 Professional experience placements – no tutorials or reading tasks.				
Week 11 - 22 October					
Week 12 - 29 October					
Week 13- 5 Nov	Science 3	Tech 3	Math 3		

First module- Weeks 1-3
Mathematics learning- Number for K – 6
Science learning - Content and processes
Mobile Technologies in practice: Interactive tools for learner engagement
Second module – Weeks 4-6
Mathematics learning in measurement and geometry
Science: Investigating the natural environment: Physical and material worlds

Mobile Technologies in practice: Computational skills and robotics

Third module – Weeks 7, 8 and 13.

Mathematics learning in Statistics and probability

Science: Investigating the man-made environment- Physical and material worlds.

Mobile Technologies in practice: Devices and apps as a cognitive tool in literacy and numeracy development

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://staff.m.q.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- · Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- Special Consideration Policy (Note: The Special Consideration Policy is effective from 4
 December 2017 and replaces the Disruption to Studies Policy.)

Undergraduate students seeking more policy resources can visit the <u>Student Policy Gateway</u> (<u>htt ps://students.mq.edu.au/support/study/student-policy-gateway</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit <u>Policy Central</u> (<u>http</u> s://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/p olicy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct

Results

Results shown in *iLearn*, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.m q.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Services and Support

Students with a disability are encouraged to contact the <u>Disability Service</u> who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.

- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- · Planning for Mathematics
- · Science and Technology Unit

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- Planning for Mathematics
- Science and Technology Unit

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- · Planning for Mathematics
- Science and Technology Unit

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them

competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- Online Quiz
- Planning for Mathematics
- · Science and Technology Unit

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within
 effective teaching and learning strategies to expand opportunities for students in
 mathematics and science learning.

Assessment tasks

- Online Quiz
- Planning for Mathematics
- Science and Technology Unit

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other

curriculum requirements of the Education Act.

- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- · Planning for Mathematics
- · Science and Technology Unit

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences
 using knowledge of the NSW Curriculum Framework, NESA syllabuses and other
 curriculum requirements of the Education Act.
- Demonstrate knowledge of mathematical concepts and processes in the area of patterns and algebra, and space and geometry.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for

the future.

- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- Planning for Mathematics
- · Science and Technology Unit

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within effective teaching and learning strategies to expand opportunities for students in mathematics and science learning.

Assessment tasks

- Planning for Mathematics
- Science and Technology Unit

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcomes

- Continue to develop an understanding of the major theoretical developments in early childhood mathematics, science and technology education.
- Continue to develop skills in designing, implementing and evaluating lesson sequences using knowledge of the NSW Curriculum Framework, NESA syllabuses and other curriculum requirements of the Education Act.
- Demonstrate knowledge of scientific concepts and processes related to the natural environment and physical and material worlds.
- Develop an ethical stance on environmental education and assume responsibility for influencing the direction of early childhood practice in order to ensure sustainability for the future.
- Demonstrate research-based knowledge of the models of pedagogy for teaching and assessing mathematics and science and technology.
- Develop skills in integrating information and communication technologies (ICT) within
 effective teaching and learning strategies to expand opportunities for students in
 mathematics and science learning.

Assessment task

Science and Technology Unit