ISYS254

Applications Modelling and Development

S1 Day 2019

Dept of Computing

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>General Assessment Information</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>7</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>8</td>
</tr>
<tr>
<td>Learning and Teaching Activities</td>
<td>9</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>9</td>
</tr>
<tr>
<td>Graduate Capabilities</td>
<td>11</td>
</tr>
<tr>
<td>Changes from Previous Offering</td>
<td>15</td>
</tr>
<tr>
<td>Assignment Extension - Policy</td>
<td>16</td>
</tr>
<tr>
<td>Standards and Grading</td>
<td>16</td>
</tr>
</tbody>
</table>

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Convenor and Lecturer
Charanya Ramakrishnan
charanya.ramakrishnan@mq.edu.au
Contact via Email

Convenor and Lecturer
Stephen Smith
stephen.smith@mq.edu.au

Lecturer
Deborah Richards
deborah.richards@mq.edu.au

Tutor
Hedieh Ranjbartabar
hedieh.ranjbartabar@mq.edu.au
Contact via Email

Tutor
Carl Svensson
carl.svensson@mq.edu.au
Contact via Email

Tutor
Zawar Hussain
zawar.hussain@mq.edu.au
Contact via Email

Credit points
3

Prerequisites
ISYS114

Corequisites

Co-badged status
ITEC654
Unit description
This unit is an intermediate unit to deliver a solid foundation in concepts, methods, tools and techniques that organisations use to control the information they use in their day-to-day business, with a particular focus on how computer-based technologies can most effectively contribute to the way business is structured. The units focuses on the fundamental concepts and models of applications development so that they can understand the key processes related to building functioning applications and appreciate the complexity of applications development. The unit emphasises program development and incorporates the software development life cycle, requirements gathering, designing a solution, and implementing and testing a solution in a programming language.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
1. Demonstrate ability to communicate software requirements and designs, clearly and effectively.
2. Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
3. Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

General Assessment Information
If you receive special consideration for the final exam, a supplementary exam will be scheduled in the interval between the regular exam period and the start of the next session. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. You can check the supplementary exam information page on FSE101 in iLearn (bit.ly/FSESupp) for dates, and approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop Participation</td>
<td>10%</td>
<td>No</td>
<td>Weekly</td>
</tr>
</tbody>
</table>

https://unitguides.mq.edu.au/unit_offerings/104009/unit_guide/print
<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Quiz in Workshops</td>
<td>5%</td>
<td>No</td>
<td>Week 3</td>
</tr>
<tr>
<td>Analysis Modelling</td>
<td>15%</td>
<td>No</td>
<td>Friday Apr 12, Wk 7, 10 pm</td>
</tr>
<tr>
<td>App. Dev. Proj - Design</td>
<td>10%</td>
<td>No</td>
<td>Friday May 10, Wk9, 5 pm</td>
</tr>
<tr>
<td>App. Dev. Proj - Development</td>
<td>15%</td>
<td>No</td>
<td>Friday May 31, Wk12, 5 pm</td>
</tr>
<tr>
<td>Final Examination</td>
<td>45%</td>
<td>No</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Workshop Participation

Due: **Weekly**
Weighting: **10%**

Workshops are combined practicals and tutorials. Workshops will involve a range of activities, some individual, some in pairs, some in groups. Be prepared to present your ideas.

Workshops are the key learning activity in this unit and your weekly attendance and active participation is expected. Each week your attendance will be recorded in your scheduled workshop and you will receive 1 mark for attendance & active participation. There are 12 weeks of workshops, however, the total attendance mark is limited to 10 throughout the semester.

Attendance at workshops in this unit is **NOT** a hurdle requirement. However, if you do not attend all the workshops, you are unlikely to have sufficient knowledge to pass the exam or sufficient total marks to be able to pass the unit.

This Assessment Task relates to the following Learning Outcomes:

- Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
- Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Diagnostic Quiz in Workshops

Due: **Week 3**
Weighting: **5%**

Quiz covering weeks 1-2 to determine students’ individual strengths, weaknesses, knowledge and skills to develop a baseline of what students know about the topic. This will be conducted during the workshop in Week-3

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate ability to communicate software requirements and designs, clearly and effectively.

• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.

Analysis Modelling
Due: Friday Apr 12, Wk 7, 10 pm
Weighting: 15%

This is an individual assignment which will develop and test your skills in requirements gathering, specification, analysis and modelling.

Assignment specification and submission via iLearn.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.

App. Dev. Proj - Design
Due: Friday May 10, Wk9, 5 pm
Weighting: 10%

You will need to form into a group. Use iLearn to put yourself into a group by the end of week 6. Instructions for doing this will be given in class and in the news forum.

Assignment Two will have two parts. Groups formed for Assignment Two will remain the same for Part-I and Part-II

Assignment Two Part-I will assess your application design skills.

Assignment specification will be available on the iLearn site. Submission will be via iLearn.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

App. Dev. Proj - Development
Due: Friday May 31, Wk12, 5 pm
Weighting: 15%

Assignment Two Part II will assess your development skills. You will remain in the same group you had for part I

This assignment will be marked in Workshops in Week 13. Both people in the pair must be present to demonstrate their understanding of the application to receive the mark awarded.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Final Examination
Due: TBA
Weighting: 45%

Closed Examination

This closed book exam will test your knowledge of the concepts and ability to apply the learning material for Weeks 1-12.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach
Delivery and Resources

CLASSES
ISYS254 is taught via lectures and workshops.

Lectures:
- Lectures are used to introduce new material, provide motivation and context for your study, guide you in what is important to learn and explain more difficult concepts.
- There are 2 hours of lectures per week.

Workshops:
- Workshops are small group classes which give you the opportunity to interact with your peers and with a tutor who has a sound knowledge of the subject. This also gives you a chance to practice your technology skills.
- You will need to enrol and attend the workshop to obtain marks for your attendance and participation
- Note: Workshops commence in Week-2
- For details of days, times and rooms consult the [timetables webpage](https://unitguides.mq.edu.au/unit_offerings/104009/unit_guide/print).

REQUIRED AND RECOMMENDED TEXTS AND/OR MATERIALS

Textbook
The textbooks for ISYS254 used this semester is:

Note: The book can be found at the co-op bookshop.

UNIT WEBPAGE AND TECHNOLOGY USED AND REQUIRED

Websites
The web page for this unit can be found at: [here](https://unitguides.mq.edu.au/unit_offerings/104009/unit_guide/print)

iLecture
Digital recordings of lectures are available. Read instructions [here](https://unitguides.mq.edu.au/unit_offerings/104009/unit_guide/print).

Technology
Power Designer, Node, Python3, JDK, React Native CLI, Atom, MS Word

Discussion Boards
The unit makes use of discussion boards hosted within ilearn. Please post questions of general interest there (for example, about assessment tasks), they are monitored by the unit staff but students may also provide answers.

FEEDBACK

You have many opportunities to seek for and to receive feedback. The feedback that you receive also plays an important role in your learning. Make sure you read the feedback you are given, attend lectures which provide assignment feedback and compare your solution with sample solutions provided. During lectures, you are encouraged to ask the lecturer questions to clarify anything you might not be sure of. You may also arrange to meet with your tutor or the lecturer or attend the consultation hours of any tutor. Each week, you will be given activities and problems to solve in the workshops. This will at times involve contributing to a group of students and presenting solutions to the class. The solutions provided will help you to understand the material in the unit, prepare you for the work in assignments as well as for the final exam. It is important that you keep up with these problems every week. Assignments have been especially designed to deliver continuous feedback on your work.

Each week you should:

- Attend lectures, take notes, ask questions
- Attend your tutorial/practical and seek feedback from your tutor on your work
- Read assigned reading material (ideally before the lecture), add to your notes and prepare questions for your lecturer or tutor
- Start working on any assignments immediately after they have been released.

Lecture notes are made available each week but these notes are intended as an outline of the lecture only and are not a substitute for your own notes or reading of the textbook or other additional material.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unit Overview + Development Methodologies + Information Gathering</td>
<td>Chp 1 & 4</td>
<td>Smith</td>
</tr>
<tr>
<td>2</td>
<td>Information Gathering + Use Case Diagrams</td>
<td>Chp 2, 5 and online resources</td>
<td>Richards</td>
</tr>
<tr>
<td>3</td>
<td>O-O Analysis and Design: Class, Sequence and State Diagrams</td>
<td>Chp 10 and online resources</td>
<td>Richards</td>
</tr>
<tr>
<td>4</td>
<td>Data dictionaries and designing databases</td>
<td>Chp 7, 8 & 13 and online resources</td>
<td>Ramakrishnan</td>
</tr>
<tr>
<td>5</td>
<td>O-O Analysis and Design: Activity & Package Diagrams</td>
<td>Chp 10 and online resources</td>
<td>Richards</td>
</tr>
<tr>
<td>6</td>
<td>Designing Effective Output</td>
<td>Chp 11</td>
<td>Ramakrishnan</td>
</tr>
</tbody>
</table>
Learning and Teaching Activities

Lectures
Lectures from staff

Workshops
The workshops provide a combination of tutorial exercises and practicals led by tutors. These workshops are designed to prepare you for all of your assessments by providing individual and group activities that explore the concepts, tools and methods used in requirements gathering, modelling, design and development of applications.

Assignments submission
Submission of assignments related to specific tasks - mix of group and individual assignments.

Exams
A final exam will assess individual learning

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide
appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the [Acceptable Use of IT Resources Policy](http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/).

The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
- Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

- Workshop Participation
- Analysis Modelling
- App. Dev. Proj - Design
- App. Dev. Proj - Development
- Final Examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.
This graduate capability is supported by:

Learning outcomes

- Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
- Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

- Workshop Participation
- Analysis Modelling
- App. Dev. Proj - Design
- App. Dev. Proj - Development
- Final Examination

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcome

- Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

- Workshop Participation
- Analysis Modelling
- App. Dev. Proj - Design
- App. Dev. Proj - Development
- Final Examination

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.
This graduate capability is supported by:

Learning outcomes

- Demonstrate ability to communicate software requirements and designs, clearly and effectively.
- Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

- Workshop Participation
- Analysis Modelling
- App. Dev. Proj - Design
- App. Dev. Proj - Development
- Final Examination

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcome

- Demonstrate ability to communicate software requirements and designs, clearly and effectively.

Assessment tasks

- Analysis Modelling
- App. Dev. Proj - Design
- App. Dev. Proj - Development
- Final Examination

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:
Learning outcome

• Demonstrate ability to communicate software requirements and designs, clearly and effectively.

Assessment tasks

• Analysis Modelling
• App. Dev. Proj - Design
• App. Dev. Proj - Development
• Final Examination

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

• Analysis Modelling
• App. Dev. Proj - Design
• App. Dev. Proj - Development
• Final Examination

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:
Learning outcomes

• Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

• Workshop Participation
• Analysis Modelling
• App. Dev. Proj - Design
• App. Dev. Proj - Development
• Final Examination

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

• Demonstrate ability to communicate software requirements and designs, clearly and effectively.
• Demonstrate an understanding of the concepts and tools needed to successfully design and build a mobile application with a database-centric approach

Assessment tasks

• Analysis Modelling
• App. Dev. Proj - Design
• App. Dev. Proj - Development
• Final Examination

Changes from Previous Offering

• Introduction of a diagnostic quiz worth 5% in Week-3
• Conceptual Design Evaluation assessment has been removed
Assignment Extension - Policy

No extensions will be granted. Late assignments will be accepted up to 72 hours after the submission deadline. There will be a deduction of 20% of the total available marks made from the total awarded mark for each 24 hour period or part thereof that the submission is late (for example, 25 hours late in submission – 40% penalty). This penalty does not apply for cases in which an application for special consideration is made and approved.

Standards and Grading

In order to pass the unit, you must obtain a total mark of 50% or higher in the unit. The final mark will be the summation of the marks you have received for assessments including the final exam.

ISYS254 will be graded according to the following general descriptions of the letter grades as specified by Macquarie University.

• High Distinction (HD, 85-100): provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application as appropriate to the discipline.

• Distinction (D, 75-84): provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.

• Credit (Cr, 65-74): provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; convincing argumentation with appropriate coherent justification; communication of ideas fluently and clearly in terms of the conventions of the discipline.

• Pass (P, 50-64): provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

• Fail (F, 0-49): does not provide evidence of attainment of learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.
<table>
<thead>
<tr>
<th>L.O. 1</th>
<th>Developing</th>
<th>Functional (P)</th>
<th>Proficient (Cr-D)</th>
<th>Advanced (D-HD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice the key phases of the software development life cycle (SDLC) including requirements engineering, analysis, design, basic development and testing and demonstrate understanding of alternative SDLC lifecycle models.</td>
<td>Basic knowledge of the names of the phases of the traditional system development life cycle but lack of understanding of alternative life cycles, how the phases relate, artefacts produced and models used in each phase or how the life cycle is used to turn a real world problem into a software solution.</td>
<td>Awareness of the phases of the traditional system development life cycle some understanding of alternative life cycles, how the phases relate, artefacts produced and models used in each phase or how the life cycle is used to turn a real world problem into a software solution.</td>
<td>Understanding of traditional and alternative life cycles, how the phases relate, artefacts produced and models used in each phase or how the life cycle is used to turn a real world problem into a software solution. Appreciation of a range of issues such as quality, project management, design tradeoffs and choices, methodologies and how they impact on the life cycle, the project, the team and software developed.</td>
<td>Deep understanding of traditional and alternative life cycles, how the phases relate, artefacts produced and models used in each phase or how the life cycle is used to turn a real world problem into a software solution. Familiarity with extended features of the tools and the role that these features can play in supporting the development of software.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L.O. 2</th>
<th>Developing</th>
<th>Functional</th>
<th>Proficient</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an understanding of the concepts and tools needed to successfully design and build database-centric application programs using object-oriented and traditional methods and project management techniques.</td>
<td>Ability to use a CASE tool to create models but with limited understanding of how the models connect and how the tool can be effectively used to ensure model consistency.</td>
<td>Ability to use a CASE tool to create models, understanding of how the models connect and some understanding of how the tool can be effectively used to ensure model consistency.</td>
<td>Ability to use a CASE tool to create models, understanding of how the models connect and how the tool can be effectively and efficiently used to ensure model consistency.</td>
<td>Ability to use a CASE tool to create models, understanding of how the models connect and how the tool can be effectively and efficiently used to ensure model consistency. Familiarity with extended features of the tools and the role that these features can play in supporting the development of software.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L.O. 3</th>
<th>Developing</th>
<th>Functional</th>
<th>Proficient</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate ability to communicate software requirements and designs clearly and effectively.</td>
<td>Aware of documentation standards and notations but not able to apply them to the appropriate situation.</td>
<td>Able to follow a standard (e.g. IEEE standard for SRS) and appropriately use modelling notations. Able to document and read documentation concerning a software application.</td>
<td>Able to communicate at a functional level and also able to verify and validate documentation produced by themselves and others.</td>
<td>Able to communicate at a proficient level and also able to demonstrate a deep understanding of the role and relationship of various documents, activities, processes and roles which make up software development teams, projects, processes and products.</td>
</tr>
</tbody>
</table>