

STAT328

Market Research and Forecasting

S2 Day 2019

Dept of Mathematics and Statistics

Contents

General Information	2
Learning Outcomes	3
General Assessment Information	3
Assessment Tasks	4
Delivery and Resources	6
Unit Schedule	6
Policies and Procedures	7
Graduate Capabilities	8
Changes from Previous Offering	13

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff

Unit Convenor & Lecturer

Tania Prvan

tania.prvan@mq.edu.au

Contact via Email

12 Wally's Walk 629

See iLearn for consultation hours

Lecturer

Balamehala Pasupathy

balamehala.pasupathy@mq.edu.au

Contact via Email

See iLearn for consultation hours

Balamehala Pasupathy

balamehala.pasupathy@mq.edu.au

Credit points

3

Prerequisites

6cp at 200 level including (STAT270 or STAT271 or BIOL235(P) or PSY222 or PSY248(P))

Corequisites

Co-badged status

Co-taught with STAT826 and STAT726.

Unit description

Advanced quantitative methods including conjoint analysis, principal component analysis and other statistical techniques that have important applications in market research form the first part of this unit. Emphasis is placed on market research applications. The unit then covers methods for modelling and forecasting trends based on time series data, including procedures for seasonal adjustment.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

Be able to perform an appropriate principal components analysis (PCA) and interpret the results.

Be able to perform an appropriate Factor Analysis (FA) and interpret the results.

Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.

Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.

Be able to fit an appropriate ARIMA with regressors to data and interpret the results.

Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

General Assessment Information

HURDLES: This unit has no hurdle requirements. Your final grade is determined by adding the marks obtained for your examinations and assignments. Students should aim to get at least 60% for the course work in order to be reasonably confident of passing the unit.

ASSIGNMENT SUBMISSION: Assignment submission will be online through the iLearn page.

Submit assignments online via the appropriate assignment link on the iLearn page. A personalised cover sheet is not required with online submissions. Read the submission statement carefully before accepting it as there are substantial penalties for making a false declaration.

- Assignment submission is via iLearn. You should upload this as a single scanned PDF file.
- Please note the guick guide on how to upload your assignments provided on the iLearn page.
- Please make sure that each page in your uploaded assignment corresponds to only one A4 page (do not upload an A3 page worth of content as an A4 page in landscape). If you are using an app like Clear Scanner, please make sure that the photos you are using are clear and shadow-free.
- It is your responsibility to make sure your assignment submission is legible.
- If there are technical obstructions to your submitting online, please email us to let us know.

You may submit as often as required prior to the due date/time. Please note that each submission will completely replace any previous submissions. It is in your interests to make frequent submissions of your partially completed work as insurance against technical or other problems near the submission deadline.

LATE SUBMISSION OF WORK: All assignments or assessments must be submitted by, and class tests taken by the official due date and time. No marks will be given to late work unless an extension has been granted following a successful application for <u>Special Consideration</u>. Please contact the unit convenor for advice as soon as you become aware that you may have difficulty

meeting any of the assignment deadlines. It is in your interests to make frequent submissions of your partially completed work. Note that later submissions completely replace any earlier submission, and so only the final submission made before the due date will be marked.

FINAL EXAM POLICY: examinations for individuals or groups of students. All students are expected to ensure that they are available until the end of the teaching semester, that is, the final day of the official examination period. The only excuse for not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these special circumstances, you may apply for special consideration via ask.mq.edu.au.

SUPPLEMENTARY EXAMINATIONS:

IMPORTANT: If you receive special consideration for the final exam, a supplementary exam will be scheduled in the interval between the regular exam period and the start of the next session. If you apply for special consideration, you must give the supplementary examination priority over any other pre-existing commitments, as such commitments will not usually be considered an acceptable basis for a second application for special consideration. Please ensure you are familiar with the policy prior to submitting an application. You can check the supplementary exam information page on FSE101 in iLearn (https://bit.ly/FSESupp) for dates, and approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

Assessment Tasks

Name	Weighting	Hurdle	Due
Class Test 1	15%	No	Week 6 lecture
Class Test 2	15%	No	Week 12 Lecture
Assignment	10%	No	2 pm 25 October 2019
Final Examination	60%	No	Formal University Examination Period

Class Test 1

Due: Week 6 lecture Weighting: 15%

This will be held in the week 6 lecture. Permitted materials for the class test are a calculator, lecture notes, homework solutions and practical solutions. There is no computer access during the class test. No electronic devices are allowed (e.g. iPhones, iPads, tablets, laptops, mobile phones) apart from nonprogrammable calculators.

Class Test 1 will be of 50 minutes duration.

On successful completion you will be able to:

• Be able to perform an appropriate principal components analysis (PCA) and interpret the

results.

- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.

Class Test 2

Due: Week 12 Lecture

Weighting: 15%

This will be held in the week 12 lecture. Permitted materials for the class test are a calculator, lecture notes, assignment, assignment solution, homework solutions, and practical solutions. There is no computer access during the class test. No electronic devices are allowed (e.g. iPhones, iPads, tablets, laptops, mobile phones) apart from non-programmable calculators.

Class Test 2 will be of 50 minutes duration.

On successful completion you will be able to:

- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.

Assignment

Due: 2 pm 25 October 2019

Weighting: 10%

The assignment must be word processed and submitted in pdf format online via iLearn by 2pm on the due date. There is no "group work" assessment in this unit. All work is to be the student's own.

On successful completion you will be able to:

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.

Final Examination

Due: Formal University Examination Period

Weighting: 60%

The final exam is 2 hours long (with an additional 10 minutes reading time).

The final examination covers all course material. Students may take into the final examination ONE A4 page of notes handwritten (not typed) on BOTH sides.

On successful completion you will be able to:

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Delivery and Resources

Every week there is one two hour lecture and one two hour practical in this unit. Lectures commence in Week 1 and Practicals in Week 2.

Technologies used and required: Lecture material will be placed on iLearn. The statistical package SPSS will be used and is available in ilab.

Recommended Texts: There is no set textbook for this unit. Useful reference texts for the Market Research part of this unit are

- Applied Multivariate Techniques by Subhash Sharma (QA278.S485/1996)
- Applied Multivariate Methods for Data Analysis by Dallas E. Johnson (QA278.J615/1998)
- Multivariate Statistical Methods by Bryan F. J. Manly (QA278.M35/2004)

There is no suitable text for Conjoint Analysis. Most treatments in Market Research textbooks are either too simple or too technical. A useful reference for the Forecasting part is

• Forecasting: Methods and Applications by Spyros Makridakis, Steven C. Wheelwright and Rob J. Hyndman (HD30.27.M34/1998)

Unit Schedule

Week	Topic
1 (29 July)	Principal Component Analysis (PCA)
2 (5 August)	PCA
3 (12 August)	Factor Analysis (FA)
4 (19 August)	FA

5 (26 August) Conjoint Analysis (CA)

6 (2 September) Revision and Class Test 1

7 (9 September) Introduction to Forecasting

8 (30 September) ARIMA models

9 (8 October) ARIMA models

10 (14 October) Dynamic Regression models and intervention analysis

11 (21 October) Exponential smoothing and Periodicity.

12 (28 October) Revision and Class Test 2

13 (4 November) No lectures

Please note that the Assignment is due 2 pm 25 October 2019 (Friday Week 11)

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://staff.m.q.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- Special Consideration Policy (Note: The Special Consideration Policy is effective from 4

 December 2017 and replaces the Disruption to Studies Policy.)

Undergraduate students seeking more policy resources can visit the <u>Student Policy Gateway</u> (htt <u>ps://students.mq.edu.au/support/study/student-policy-gateway</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- · Academic Integrity Module for Students
- Ask a Learning Adviser

Student Services and Support

Students with a disability are encouraged to contact the <u>Disability Service</u> who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

If you are a Global MBA student contact globalmba.support@mq.edu.au

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices and units/information technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- · Class Test 1
- · Class Test 2
- Assignment
- Final Examination

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- · Class Test 1
- · Class Test 2
- Assignment

Final Examination

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- · Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- Class Test 1
- Class Test 2
- Assignment
- Final Examination

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.

- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- Class Test 1
- · Class Test 2
- Assignment
- Final Examination

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- · Class Test 1
- · Class Test 2
- Assignment
- Final Examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and

they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- · Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- Class Test 1
- · Class Test 2
- Assignment
- Final Examination

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Be able to perform an appropriate principal components analysis (PCA) and interpret the results.
- Be able to perform an appropriate Factor Analysis (FA) and interpret the results.
- Be able to perform a Conjoint Analysis (CA) and generate an orthogonal plan.
- Be able to fit an appropriate AR, MA or ARIMA time series model to data and interpret the results.
- Be able to fit an appropriate ARIMA with regressors to data and interpret the results.
- Be able to smooth data and fit an appropriate ARIMA to the smoothed data.

Assessment tasks

- Class Test 1
- · Class Test 2
- Assignment
- Final Examination

Changes from Previous Offering

The number of assignments has been reduced from two to one and the two class tests are now worth 15% each instead of 10% each.