

BMOL3202

Macromolecules

Session 2, Weekday attendance, North Ryde 2020

Department of Molecular Sciences

Contents

General Information	2
Learning Outcomes	3
General Assessment Information	3
Assessment Tasks	4
Delivery and Resources	6
Unit Schedule	7
Policies and Procedures	9
Changes from Previous Offering	10

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

Notice

As part of Phase 3 of our return to campus plan, most units will now run tutorials, seminars and ot her small group learning activities on campus for the second half-year, while keeping an online ver sion available for those students unable to return or those who choose to continue their studies onli ne.

To check the availability of face-to-face and onlin e activities for your unit, please go to timetable vi ewer. To check detailed information on unit asses sments visit your unit's iLearn space or consult yo ur unit convenor.

General Information

Unit convenor and teaching staff Unit Convener Louise Brown Iouise.brown@mq.edu.au Contact via Email E8C Room 305 Tuesday to Friday (9am to 4pm) by appointment

Lecturer Alf Garcia-Bennett alf.garcia@mq.edu.au

Lecturer Yuling Wang yuling.wang@mq.edu.au

Lecturer Morten Andersen morten.andersen@mq.edu.au

Tutor Phani Rekha Potluri phani-rekha.potluri@mq.edu.au

Credit points 10

Prerequisites (CHEM2201 or CBMS200) or (BMOL2201 or CBMS201)

Corequisites

Co-badged status This unit is co-badged with BMOL6202

Unit description

This unit outlines molecular principles underlying macromolecules and nano-materials that find a wide range of applications from nanotechnology, biomedical research, to bioengineering. Practices common in these fields to design, prepare, synthesise and then isolate new materials will be emphasized. Molecular properties leading to the 3D shape of macromolecules will be reviewed. Contemporary structural and imaging based methods to view and characterise macromolecules, both natural and synthetic, will be examined. In particular, attention will be given to the chemical, biochemical and structural characterisation of the building blocks of the living world including nucleic acids, proteins, and polysaccharides. Recent advances and landmark reports from the current literature will be examined. The unit will be delivered through workshops, seminars, lab work and project-based learning.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: Describe and apply the underlying principles for synthesising and engineering macromolecules and other synthetic particle-based nanomaterials. Apply this knowledge to design and conduct experiments to synthesise macromolecules in the laboratory. **ULO2:** Describe bio-macromolecular forms and architectures (size/shape) for proteins,

sugars and nucleotides.

ULO3: Interpret and draw sound conclusions from analytical and biophysical data.

ULO4: Describe the principles of contemporary analytical tools to image and characterise the structural features of bio-macromolecules and synthetic macromolecules. Utilise these techniques to collect experimental data on one or more macromolecule.

ULO5: Apply basic concepts from thermodynamics and kinetics to interpret molecular mechanisms of macromolecule systems.

ULO6: Extract and interpret information from a variety of sources concerning macromolecules, including the contemporary scientific literature.

General Assessment Information

Your written reports may be subjected to analysis by Turnitin. Due dates for assessment tasks are on the ilearn site and assignments must be submitted through the ilearn site, where appropriate.

No extensions will be granted, unless a case for Special Consideration (Disruption to Study) has been approved.

Late reports will be penalised by deduction of 10% of total available marks for each 24 hour period delay. It is your responsibility to ensure all documents submitted on line are correct and readable.

Assessment Tasks

Name	Weighting	Hurdle	Due
Workshop reports x 3	15%	No	Two weeks after w'shop session (held in weeks 3, 7 & 9)
Lab Report x 3	30%	No	Two weeks after lab session (Labs run in weeks 4, 6, 8 & 10)
Case study	15%	No	Weeks 11-12
Final Exam	40%	No	University exam period

Workshop reports x 3

Assessment Type ¹: Report Indicative Time on Task ²: 18 hours Due: **Two weeks after w'shop session (held in weeks 3, 7 & 9)** Weighting: **15%**

There will be five workshops in total. THREE short workshop reports (from workshops 2, 3 and 4) will be due two weeks after the workshop sessions. Each workshop report is worth 5%.

On successful completion you will be able to:

- Describe bio-macromolecular forms and architectures (size/shape) for proteins, sugars and nucleotides.
- Interpret and draw sound conclusions from analytical and biophysical data.
- Apply basic concepts from thermodynamics and kinetics to interpret molecular mechanisms of macromolecule systems.

Lab Report x 3

Assessment Type ¹: Lab report Indicative Time on Task ²: 24 hours Due: **Two weeks after lab session (Labs run in weeks 4, 6, 8 & 10)** Weighting: 30%

There will be FOUR practicals in total. A lab report is to be submitted two weeks after all four practicals. Each lab report is worth 10%. Only the top THREE marks from your four practicals will contribute to 30% of your final grade.

On successful completion you will be able to:

- Describe and apply the underlying principles for synthesising and engineering macromolecules and other synthetic particle-based nanomaterials. Apply this knowledge to design and conduct experiments to synthesise macromolecules in the laboratory.
- Interpret and draw sound conclusions from analytical and biophysical data.
- Describe the principles of contemporary analytical tools to image and characterise the structural features of bio-macromolecules and synthetic macromolecules. Utilise these techniques to collect experimental data on one or more macromolecule.
- Apply basic concepts from thermodynamics and kinetics to interpret molecular mechanisms of macromolecule systems.

Case study

Assessment Type 1: Case study/analysis Indicative Time on Task 2: 10 hours Due: **Weeks 11-12** Weighting: **15%**

A short 10 minute presentation will be given in small groups on the topic of a contemporary macromolecule. Half of the marks are for the group and half the marks are for your individual contribution.

On successful completion you will be able to:

- Describe bio-macromolecular forms and architectures (size/shape) for proteins, sugars and nucleotides.
- Describe the principles of contemporary analytical tools to image and characterise the structural features of bio-macromolecules and synthetic macromolecules. Utilise these techniques to collect experimental data on one or more macromolecule.
- Extract and interpret information from a variety of sources concerning macromolecules, including the contemporary scientific literature.

Final Exam

Assessment Type 1: Examination Indicative Time on Task 2: 20 hours Due: **University exam period** Weighting: **40%**

The final 3hr examination will cover all sections of the unit (lectures, lab practicals, workshops and assignments) and is designed to address specific understanding of all the concepts presented within the course.

On successful completion you will be able to:

- Describe and apply the underlying principles for synthesising and engineering macromolecules and other synthetic particle-based nanomaterials. Apply this knowledge to design and conduct experiments to synthesise macromolecules in the laboratory.
- Describe bio-macromolecular forms and architectures (size/shape) for proteins, sugars and nucleotides.
- Interpret and draw sound conclusions from analytical and biophysical data.
- Describe the principles of contemporary analytical tools to image and characterise the structural features of bio-macromolecules and synthetic macromolecules. Utilise these techniques to collect experimental data on one or more macromolecule.
- Apply basic concepts from thermodynamics and kinetics to interpret molecular mechanisms of macromolecule systems.

¹ If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.

² Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Lectures: there are **two lectures** per week as per the university timetable. Lectures are delivered **online** and will also be recorded. Some lectures may be pre-recorded and made available prior to the scheduled lecture; and then followed up by an online Q&A session with the lecturer. All lecture material will be made available in iLearn.

Workshop Sessions (Dry-lab): There are six scheduled workshop sessions in total. These will either be delivered online (workshops 1, 3 and 6) OR on campus (workshops 2, 4 and 5 - see timetable for location of on-campus sessions). Workshops 1 and 3 (week 2 and week 5, respectively) are optional in attendance and will cover lab report writing skills and provide additional help to students on lab reports. Workshop 6 sessions will be held over two weeks (weeks 11 and 12) and is when oral presentations will be given (online). There are **THREE workshop sessions** that have associated reports to be submitted (workshops 2, 4 and 5). These are **held on campus in weeks 3, 7 and 9**. Participation for workshop sessions 3, 7 and 9 (held on campus) is a required part of the unit to complete the associated workshop reports. If you cannot attend, a Special Consideration request must be submitted if you wish your absence to be considered.

** Due to **COVID**, it is a requirement that students **bring their own laptops** to workshop sessions held on campus. Please ensure your laptop is fully charged as powerpoints may not be available for all students. If you require a loan of a laptop, this can be arranged PRIOR to the workshop session by contacting the unit convenor. Also, workshop sessions cannot run for the full two hours due to university COVID attendance restrictions. Workshop sessions will run for a total of 1 hr and 40 minutes. You will be asked to leave the room 15 minutes before the end of the second hour.

Laboratory Sessions (Wet-lab): 3 hour Laboratory sessions are scheduled according to the timetable. There are three timetabled sessions available. Labs will be held in <u>14 Sir Christopher</u> Ondaatje Ave (E7B) <u>349 Science Lab</u>. In total, there are FOUR lab sessions held in **weeks 4, 5, 8 and 10**. Attendance at laboratory sessions is **COMPULSORY**. If you cannot attend, you must submit a Special Consideration request if you wish your absence to be considered.

** Due to COVID, students must **bring their own labcoats** to be allowed to enter the labs. It is also recommended that students bring their own safety glasses. However, these will be provided if students to not have their own safety glasses. Other PPE will be provided.

Textbooks: There is no required text for this unit. Reading material will be advised by your lecturer. A list of suggested reading material and text will be made available on iLearn and through the library website https://libguides.mq.edu.au/leganto.

Unit Schedule

This table is an indication only of lecture topics and the scheduling of practical/workshop sessions. The order/content and dates for certain activities may change. Changes to this schedule will be communicated via iLearn.

19-Oct

11

23-Oct

Characterising Macromolecules

LB

Week	Week starting	Date for both	Lecture 1 (online)		Lecture 2 (online)		Workshop sessions Wednesday:	P
		online Friday lectures	Friday: 9-10am		Friday: 11-12pm		2-4pm (online or on campus, <i>see</i> timetable)	2- W 10 2- S 0 3-
1	27-Jul	31-Jul	Introduction	LB	Introduction	LB		
2	3-Aug	7-Aug	Chemistry of non-covalent Interactions	LB	Chemistry of non-covalent Interactions	LB	#1 - how to write prac reports (online, optional)	
3	10-Aug	14-Aug	Folding & stability of macromolecules in solution	LB	Folding & stability of macromolecules in solution	LB	#2: WorkshopFold IT (on campus, report to be submitted)	
4	17-Aug	21-Aug	Folding & stability of macromolecules in solution	LB	Biological Macromolecules	LB		Pi C <u>:</u> Hi Cl
5	24-Aug	28-Aug	Biological Macromolecules	LB	Biological Macromolecules	LB	#3. Extra prac help session (online, optional)	
6	31-Aug	4-Sep	Biological Macromolecules	MA	Synthesis & self-assembly	AGB		Pı M ur (tł
7	7-Sep	11-Sep	Synthesis & self-assembly	AGB	Synthesis & self-assembly	AGB	#4. Biomolecules workshop Part A (on campus, report to be submitted)	
Mid-sei	mester brea	k: 14-25 Se	pt					
8	28-Sep	2-Oct	Characterising Macromolecules	LB	Characterising Macromolecules	LB		Pr Sp ch of fo Iys
9	5-Oct	9-Oct	Characterising Macromolecules	LB	Special Topics: Molecules built to specific shapes (nanogold)	YW	#5. Biomolecules workshop Part B (on campus, report to be submitted)	
10	12-Oct	16-Oct	Characterising Macromolecules	AGB	Characterising Macromolecules	AGB		Pi ar ch na pa
	10 Oct	22 Oct	Charactericing Macromologulos				#6 Case studies: Oral	

Characterising Macromolecules

LB

#6. Case studies: Oral

Presentations (15%)

12	26-Oct	30-Oct	Special Topics: Molecules built to specific shapes	LB	Special Topics: Molecules built to specific shapes (nanodiamonds)	LB	#6. Case studies: Oral Presentations (15%)
13	2-Nov	6-Nov	Special Topics: Molecules built for specific functions	LB	Revision		

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://staff.m q.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-centr al). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- <u>Special Consideration Policy</u> (*Note: The Special Consideration Policy is effective from 4* December 2017 and replaces the Disruption to Studies Policy.)

Students seeking more policy resources can visit the <u>Student Policy Gateway</u> (https://students.m <u>q.edu.au/support/study/student-policy-gateway</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (http s://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/p olicy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct

Results

Results published on platform other than <u>eStudent</u>, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <u>eStudent</u>. For more information visit <u>ask.mq.edu.au</u> or if you are a Global MBA student contact globalmba.support@mq.edu.au

Student Support

Macquarie University provides a range of support services for students. For details, visit <u>http://stu</u> dents.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to help you improve your marks and take control of your study.

- · Getting help with your assignment
- Workshops
- StudyWise
- Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Students with a disability are encouraged to contact the **Disability Service** who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

If you are a Global MBA student contact globalmba.support@mq.edu.au

IT Help

For help with University computer systems and technology, visit <u>http://www.mq.edu.au/about_us/</u>offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering

This is the second offering of 'Macromolecules'. There are additional optional workshop sessions to help students with report writing (workshops 1 and workshops 3). There are no other changes to this unit. However, due to COVID, please note that some workshop and laboratory activities have been modified.