ELCT3005
Power Electronics
Session 1, Weekday attendance, North Ryde 2021
School of Engineering

Contents

General Information 2
Learning Outcomes 2
General Assessment Information 3
Assessment Tasks 4
Delivery and Resources 6
Unit Schedule 8
Policies and Procedures 8
Changes from Previous Offering 10

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

Notice
As part of Phase 3 of our return to campus plan, most units will now run tutorials, seminars and other small group activities on campus, and most will keep an online version available to those students unable to return or those who choose to continue their studies online.

To check the availability of face-to-face activities for your unit, please go to timetable viewer. To check detailed information on unit assessments visit your unit’s iLearn space or consult your unit convenor.
General Information

Unit convenor and teaching staff
Lecturer
Leonardo Callegaro
leonardo.callegaro@mq.edu.au
Contact via 02 9850 2314
Level 1, 44 Waterloo Road Macquarie Park, NSW 2113
Wednesday: 14:00-16:00 (by appointment only)

Credit points
10

Prerequisites
(ELEC2070 or ELEC270) and (ELEC2005 or (ELCT2005 or ELEC295) or (ELEC2075 or ELEC275))

Corequisites

Co-badged status

Unit description
This unit develops fundamental knowledge and skills in the area of power electronics converters and their typical applications. Foundation knowledge in semiconductor devices, passive components and general circuit analysis is assumed. The unit extends those fundamentals to electrical energy conversion systems operating with relatively high current and voltage levels. Topics covered include: an introduction on power semiconductors and converters; power computations essential in analysing and designing power electronics circuits; dc-dc converters and dc power supplies; single and three phase inverters and rectifiers; and power electronics applications. This unit uses problem/team based learning approach, where students have to choose a project topic and their team members, and then design, simulate, build and test a converter prototype. PLECS simulation tool and a control board are used in the development of the project.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: Describe the relationship between physical structure and performance
characteristics of passive electrical components and active semiconductor power electronic devices;

ULO2: Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;

ULO3: Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;

ULO4: Design, model/build and analyse a complete power converter application based on a set of user specifications;

ULO5: Demonstrate knowledge of emerging applications of power electronics in the renewable energy systems, energy storage systems and micro-grids;

General Assessment Information

Grading and Passing Requirement for Unit

- In order to pass this Unit a student must obtain a mark of 50 or more for the Unit (i.e. obtain a passing grade P, CR, D, or HD).
- For further details about grading, please refer below in the policies and procedures section.
- If you receive special consideration for the oral presentation and demonstration of the Project, a supplementary conventional exam will be scheduled by the faculty during a supplementary exam period, typically about 3 to 4 weeks after the normal exam period. By making a special consideration application for the oral presentation and demonstration of the Project you are declaring yourself available for a conventional exam during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to applying. Approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

Hurdle Requirements

- Students must attend and participate in at least 6 of the 7 weekly PC Labs (Weeks 1-7) to pass this unit.
- Students must attend and participate in at least 5 of the 6 weekly Project Labs (Weeks 8-13) to pass this unit.

Late Submissions and Re-submissions

- Late report submissions will attract a penalty of <10/100, 10%> marks per
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Class Quiz (Lectorials)</td>
<td>10%</td>
<td>No</td>
<td>Weeks 2-7</td>
</tr>
<tr>
<td>Assignments (PC Labs)</td>
<td>20%</td>
<td>No</td>
<td>Weeks 2-7</td>
</tr>
<tr>
<td>Class Quiz (Lectorials)</td>
<td>20%</td>
<td>No</td>
<td>Week 8</td>
</tr>
<tr>
<td>Assessment (Project)</td>
<td>50%</td>
<td>No</td>
<td>Weeks 13-14</td>
</tr>
</tbody>
</table>

Pre-Class Quiz (Lectorials)

Assessment Type ¹: Quiz/Test
Indicative Time on Task ²: 5 hours
Due: **Weeks 2-7**
Weighting: **10%**

Students are expected to go through the iLearn content, understand the theory and attempt the online quiz each week prior to attending the class activities of that week.

On successful completion you will be able to:

- Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
- Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;

Assignments (PC Labs)

Assessment Type ¹: Problem set

Students are reminded of the University policies regarding assessment, academic integrity and disruption to studies.

Requests for extension on assessable work are to be made to the Unit Coordinator but will only be considered in the event of illness or misadventure.
Evaluation of Lab activity during first part of the semester. This evaluation focuses on students ability to perform modelling, design and implementation of power electronics systems using PLECS.

On successful completion you will be able to:
- Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Design, model/build and analyse a complete power converter application based on a set of user specifications;

Class Quiz (Lectorials)
Assessment Type 1: Quiz/Test
Indicative Time on Task 2: 5 hours
Due: Week 8
Weighting: 20%

A quiz is scheduled right after the mid-semester break. The quiz will assess both factual knowledge and problem solving.

On successful completion you will be able to:
- Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Demonstrate knowledge of emerging applications of power electronics in the renewable energy systems, energy storage systems and micro-grids;

Assessment (Project)
Assessment Type 1: Project
Indicative Time on Task: 20 hours
Due: Weeks 13-14
Weighting: 50%

This is the major assessment of this Unit. It will consist of 3 individual assessments and 1 team assessment, as follows: - Individual assessments: ◦ Oral presentation and demonstration of the project; ◦ Peer assessment regarding the actual contribution of each team member; ◦ Evaluation of project log book of each team member. - Team assessment: ◦ Project report to be submitted in iLearn by each team.

On successful completion you will be able to:
• Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
• Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
• Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
• Design, model/build and analyse a complete power converter application based on a set of user specifications;
• Demonstrate knowledge of emerging applications of power electronics in the renewable energy systems, energy storage systems and micro-grids;

1 If you need help with your assignment, please contact:
• the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
• the Learning Skills Unit for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources
UNIT WEBSITE
• The iLearn website for this unit can be found at: https://ilearn.mq.edu.au/login/.
 ◦ Note! All information and communications relevant to this Unit will be via the iLearn website.

TEXTBOOK
 - Note! Links will be provided to specific sections of the Digital version in iLearn for each Lectorial.
• Remark: All students are expected to have access to this textbook.

LECTORIALS

• There will be a Lectorial (3 hours) for every week in the first part of the semester (Weeks 1-7). The Lectorial will comprise of: - discussion session on fundamental knowledge; - many practical examples; - interactive problem solving involving the students.
• Lectorials are a combination of traditional lecture and tutorial teaching modes and are designed to improve student engagement inside/outside classes.
• The Lectorials are organised in a flipped classroom fashion.
• **Outside class**
 - links to E-Text specific sections, brief videos and/or lecture notes are posted in iLearn each week.
 - students are expected to read these E-Text sections, try to solve any given examples, and watch any videos and/or read any posted notes prior to attending the Lectorials.
• **Inside class**
 - brief discussion sessions on fundamental principles.
 - plenty of practical examples.
 - interactive problem solving involving students.

LABORATORIES

• PC Lab activities take place once a week (Weeks 1-7) according to the Unit schedule.
 - Note! Students must enrol in one of the available weekly Lab sessions.
• Interactive PC Labs use PLECS software platform to assist with the modelling and design of power electronics converters.

PROJECTS

• Project activities take place once a week (Weeks 8-13) according to the Unit schedule.
 - Note! Teams must enrol in one of the two available weekly Project sessions.
• The team Project is the core component of this Unit. The Projects cover practical aspects of control theory to be used in future Electrical, Electronics and Mechatronics units.
• Students are required to form teams and choose one project topic from a given list of projects.
 ◦ *Note! When forming teams, students should agree in which weekly Project session they want to enrol.*
 ◦ *All Project activities are performed in teams;*

TECHNOLOGY

• The laboratory work will rely on the use of PLECS software platform.
• PLECS Standalone software can be downloaded for free from [Plexim website](https://plexim.com/support) and/or can be used on dedicated Lab PCs.
 ◦ *Note! The PLECS server license will cover only PCs connected to MQ online network.*
• Each team will be given a hardware kit for the second half of the semester to perform experimental activities.

COMMUNICATIONS

• Students are reminded the University will communicate all official notices by email to official MQ student's account. Students should read their @student.mq.edu.au email regularly or forward it to an account they check regularly.
• All announcements and other communications regarding this Unit will be via iLearn platform.

WEB RESOURCES

• **PLECS support:**
 ◦ https://plexim.com/support
 ▪ PLECS videos
 ▪ Application examples
 ▪ Technical solutions
 ▪ Installation help

Unit Schedule

Refer to iLearn website for a detailed Unit schedule.

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:
• Academic Appeals Policy
• Academic Integrity Policy
• Academic Progression Policy
• Assessment Policy
• Fitness to Practice Procedure
• Grade Appeal Policy
• Complaint Management Procedure for Students and Members of the Public
• Special Consideration Policy (Note: The Special Consideration Policy is effective from 4 December 2017 and replaces the Disruption to Studies Policy.)

Students seeking more policy resources can visit the Student Policy Gateway (https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to help you improve your marks and take control of your study.

- Getting help with your assignment
- Workshops
- StudyWise
- Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.
Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au
If you are a Global MBA student contact globalmba.support@mq.edu.au

Equity Support
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/
When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy.
The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering
This Unit has been revised compared to previous offering as follows:

- Pre-Class Quizzes prior to Lectorials (Weeks 2-7)
- Single main Quiz after Lectorials end (Week 8)