PHYS2020
Electromagnetism and Relativity
Session 2, Weekday attendance, North Ryde 2021
Department of Physics and Astronomy

Contents

General Information .. 2
Learning Outcomes .. 3
General Assessment Information 3
Assessment Tasks ... 4
Delivery and Resources .. 7
Policies and Procedures .. 7
Changes from Previous Offering 8

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

Notice
Some on-campus classes have moved online for the first two weeks of Session, before returning to campus in Week 3. If you are studying a unit outside of the primary Session 2 timetable, please contact your teaching staff team for further details.

Some classes/teaching activities cannot be moved online and must be taught on campus. To find out if you are enrolled in one of these classes/teaching activities, you can check to see if your unit is on the list of units with mandatory on-campus classes/teaching activities.

Your Unit Convenor will provide more information via an iLearn announcement when your iLearn unit becomes available.
General Information

Unit convenor and teaching staff
Unit Convenor, Lecturer
Alex Fuerbach
alex.fuerbach@mq.edu.au
By Appointment via Email

Lecturer
Mark Wardle
mark.wardle@mq.edu.au

Senior Scientific Officer
Adam Joyce
adam.joyce@mq.edu.au

Lab demonstrator
Deb Kane
deb.kane@mq.edu.au

Lab demonstrator
Christian Schwab
christian.schwab@mq.edu.au

Lab demonstrator
Thomas Volz
thomas.volz@mq.edu.au

Senior Scientific Officer
Gina Dunford
regina.dunford@mq.edu.au

Credit points
10

Prerequisites
(PHYS201 or PHYS2010) and (MATH235 or MATH2010 or MATH2055)

Corequisites
MATH236 or MATH232 or MATH2020 or MATH2110

Co-badged status
Unit description
The first half of the unit introduces the principles, theory and application of classical electromagnetism, which describes the properties and behaviour of electric and magnetic fields and their interaction with charged matter. Maxwell's four laws of electromagnetism are revisited, in the powerful language of vector calculus. We apply these laws to understand a range of phenomena in electrostatics, magnetostatics and electrodynamics. In the second half of the unit, we introduce the postulates of special relativity and explore their implications for the nature of spacetime. We determine how to refine Newtonian mechanics to be correct in the relativistic limit and show the deep connection between the geometry of spacetime and electromagnetism. Advanced techniques of experimental physics including indirect measurement of microscopic quantities are covered in guided laboratory sessions, as are data analysis techniques and report writing.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: use symmetry arguments to derive electric and magnetic fields from various configurations of charges and currents.

ULO2: apply differential and integral calculus to scalar and vector fields in cartesian, spherical, and cylindrical coordinates.

ULO3: solve electromagnetism problems involving constant as well as time dependent electric and magnetic fields.

ULO4: understand the origin of the transformation laws in special relativity from Einstein’s postulates, and discuss and numerically analyse simple relativistic problems.

ULO5: safely use experimental equipment to perform specified measurements, and analyse and interpret the results in the context of discipline knowledge.

General Assessment Information
This unit has hurdle requirements, specifying a minimum standard that must be attained in aspects of the unit. To pass this unit you must obtain a mark of at least:

- 50% in the unit overall as well as
- 40% in the final examination

and
- 40% in each individual laboratory activity (full report or lab book).

In addition, you must also submit a minimum of 8 regular quizzes.

The laboratory will be assessed in the following way:

Each experiment is allotted two weeks for completion and you are expected to complete 5 experiments.

(i) For all experiments apart from experiment 3, the notes in your laboratory notebook will be marked. If those are less than satisfactory, the book will be returned to you for correcting, and then re-marked. All relevant calculations must be done, the appropriate graphs drawn, and uncertainties assessed where appropriate.

(ii) You are required to submit a full report on the experiment you are doing in weeks 6 and 7. This report will be submitted in draft form initially. It will be marked and returned to you with comments for improvement. When the report is resubmitted, your first attempt should also be handed in for comparison. The mark awarded for the report will be that obtained in the second marking. (However, if you obtain more than 7 out of 10 for the initial submission, then handing in the final version is optional.) This strategy gives you the opportunity to use the feedback from staff to help you develop professional report writing skills before your work is finally graded.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular quizzes</td>
<td>25%</td>
<td>Yes</td>
<td>Weekly</td>
</tr>
<tr>
<td>Lab reports</td>
<td>20%</td>
<td>Yes</td>
<td>Fortnightly, detailed schedule posted on iLearn.</td>
</tr>
<tr>
<td>Readings and peer-discussions</td>
<td>15%</td>
<td>No</td>
<td>Weekly</td>
</tr>
<tr>
<td>Final exam</td>
<td>40%</td>
<td>Yes</td>
<td>Exam period</td>
</tr>
</tbody>
</table>

Regular quizzes

Assessment Type: Quiz/Test
Indicative Time on Task: 0 hours
Due: Weekly
Weighting: 25%

This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

Short- and long-form problem solving questions, taken in SGTA sessions
On successful completion you will be able to:

- use symmetry arguments to derive electric and magnetic fields from various configurations of charges and currents.
- apply differential and integral calculus to scalar and vector fields in cartesian, spherical, and cylindrical coordinates.
- solve electromagnetism problems involving constant as well as time dependent electric and magnetic fields.
- understand the origin of the transformation laws in special relativity from Einstein’s postulates, and discuss and numerically analyse simple relativistic problems.

Lab reports

Assessment Type 1: Lab report
Indicative Time on Task 2: 24 hours
Due: **Fortnightly, detailed schedule posted on iLearn.**
Weighting: **20%**

This is a hurdle assessment task (see [assessment policy](#) for more information on hurdle assessment tasks)

Laboratory-related tasks, analysis, and reporting

On successful completion you will be able to:

- safely use experimental equipment to perform specified measurements, and analyse and interpret the results in the context of discipline knowledge.

Readings and peer-discussions

Assessment Type 1: Participatory task
Indicative Time on Task 2: 18 hours
Due: **Weekly**
Weighting: **15%**

Preclass reading, annotation, and peer discussion using the Perusall tool

On successful completion you will be able to:
Final exam

Assessment Type: Examination
Indicative Time on Task: 20 hours
Due: Exam period
Weighting: 40%

This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

Final exam in the University Examination period.

On successful completion you will be able to:
• use symmetry arguments to derive electric and magnetic fields from various configurations of charges and currents.
• apply differential and integral calculus to scalar and vector fields in cartesian, spherical, and cylindrical coordinates.
• solve electromagnetism problems involving constant as well as time dependent electric and magnetic fields.
• understand the origin of the transformation laws in special relativity from Einstein’s postulates, and discuss and numerically analyse simple relativistic problems.

1 If you need help with your assignment, please contact:
• the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
• the Learning Skills Unit for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation
Delivery and Resources

Lab books and reports will be marked regularly.

Lecture content, tutorial questions and Perusall readings will form the basis for regular quizzes and final examination assessments of problem-solving skills and understanding of content.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- Special Consideration Policy (Note: The Special Consideration Policy is effective from 4 December 2017 and replaces the Disruption to Studies Policy.)

Students seeking more policy resources can visit the Student Policy Gateway (https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Student Support

Macquarie University provides a range of support services for students. For details, visit http://stu
Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to help you improve your marks and take control of your study.

- Getting help with your assignment
- Workshops
- StudyWise
- Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

If you are a Global MBA student contact globalmba.support@mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering

This unit has undergone significant changes this year. In the first half of the unit, Thermodynamics was previously taught, while Relativity was previously taught in 3rd year. This year, Relativity replaces Thermodynamics in PHYS2020.