CHEM6231
Advanced Analysis
Session 1, Weekday attendance, North Ryde 2021
Department of Molecular Sciences

Contents

General Information 2
Learning Outcomes 3
General Assessment Information 3
Assessment Tasks 4
Delivery and Resources 6
Unit Schedule 7
Policies and Procedures 7

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

Notice
As part of Phase 3 of our return to campus plan, most units will now run tutorials, seminars and other small group activities on campus, and most will keep an online version available to those students unable to return or those who choose to continue their studies online.

To check the availability of face-to-face activities for your unit, please go to timetable viewer. To check detailed information on unit assessments visit your unit’s iLearn space or consult your unit convenor.
General Information

Unit convenor and teaching staff
Convener, Lecturer
Alf Garcia-Bennett
alf.garcia@mq.edu.au
Contact via 02 9850 8285
4 Wally's Walk, Level 3, Room 327
Tuesday and Thursday 15:00-17:00

Lecturer
Yuling Wang
yuling.wang@mq.edu.au

Lecturer
Ian Jamie
ian.jamie@mq.edu.au

Lecturer
Alison Rodger
alison.rodger@mq.edu.au

Laboratory Manager
Mark Tran
mark.tran@mq.edu.au

Credit points
10

Prerequisites
Admission to GradDipBiotech or GradCertLabAQMgt or GradDipLabAQMgt or MBiotech or MBioBus or MLabAQMgt or MRadiopharmSc or MSc or MScInnovationChemBiomolecularSc

Corequisites

Co-badged status
CHEM 3202
Unit description
This unit covers advanced aspects of chemical analysis, building on the foundations laid in Analysis and Measurement. Modern chemical principles and practice of identifying substances and of determining their composition are discussed. Topics include many analytical techniques commonly employed in both industrial and academic research laboratories. Examples of applications to environmental and biological samples include: analysis of heavy metals by atomic absorption spectroscopy; inductively coupled plasma atomic emission spectroscopy; electrochemical detection of biochemcials and environmental pollutants. The unit emphasises hands-on experience in analysing real life samples, using many of these techniques.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: Describe the scope of analytical chemistry.
ULO2: Demonstrate competency in the use of important analytical techniques commonly used in industrial and academic research.
ULO3: Analyse and interpret experimental data and present them in a structured report using appropriate scientific referencing.
ULO4: Analyse and critique experimental data and present them in oral format.
ULO5: Process and analyse chemical experimental data to draw scientifically sound conclusions, particularly the significance and validity of analytical results involving real-life samples.
ULO6: Communicate analytical chemical knowledge by appropriately documenting the essential details of procedures undertaken, key observations, results and conclusions.

General Assessment Information
In order to complete this unit satisfactorily students must:

(a) attend and participate satisfactorily in ALL laboratory sessions;
(b) submit satisfactory efforts at two (2) assignments;
(c) perform satisfactorily in a final examination of three hours duration.
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Report</td>
<td>30%</td>
<td>No</td>
<td>1 week after completion of Laboratory Session</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>10%</td>
<td>No</td>
<td>Monday 18th April, Week 17</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>10%</td>
<td>No</td>
<td>Friday 18th May, Week 22</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
<td>No</td>
<td>Week 14-15</td>
</tr>
</tbody>
</table>

Laboratory Report

Assessment Type 1: Lab report
Indicative Time on Task 2: 30 hours
Due: **1 week after completion of Laboratory Session**
Weighting: **30%**

For each experiment, students are required to complete some Pre-laboratory work including Materials Safety Data Sheets and the general understanding of aim and procedure of the experiment. Following the completion of a laboratory session, students will then complete a written report.

On successful completion you will be able to:

- Describe the scope of analytical chemistry.
- Demonstrate competency in the use of important analytical techniques commonly used in industrial and academic research.
- Analyse and interpret experimental data and present them in a structured report using appropriate scientific referencing.
- Analyse and critique experimental data and present them in oral format.
- Process and analyse chemical experimental data to draw scientifically sound conclusions, particularly the significance and validity of analytical results involving real-life samples.
- Communicate analytical chemical knowledge by appropriately documenting the essential details of procedures undertaken, key observations, results and conclusions.

Assignment 1

Assessment Type 1: Problem set
Indicative Time on Task: 15 hours
Due: Monday 18th April, Week 17
Weighting: 10%

Qualitative and quantitative questions requiring processing and critically analysis.

On successful completion you will be able to:
• Analyse and interpret experimental data and present them in a structured report using appropriate scientific referencing.
• Analyse and critique experimental data and present them in oral format.
• Process and analyse chemical experimental data to draw scientifically sound conclusions, particularly the significance and validity of analytical results involving real-life samples.
• Communicate analytical chemical knowledge by appropriately documenting the essential details of procedures undertaken, key observations, results and conclusions.

Assignment 2
Assessment Type: Problem set
Indicative Time on Task: 15 hours
Due: Friday 18th May, Week 22
Weighting: 10%

Numerical questions requiring students to process and critically analyse the supplied quantitative data; short-answer (fewer than 5 lines) questions.

On successful completion you will be able to:
• Analyse and interpret experimental data and present them in a structured report using appropriate scientific referencing.
• Analyse and critique experimental data and present them in oral format.
• Process and analyse chemical experimental data to draw scientifically sound conclusions, particularly the significance and validity of analytical results involving real-life samples.
• Communicate analytical chemical knowledge by appropriately documenting the essential details of procedures undertaken, key observations, results and conclusions.
Final Examination

Assessment Type: Examination
Indicative Time on Task: 35 hours
Due: Week 14-15
Weighting: 50%

Closed book examination.

On successful completion you will be able to:

• Describe the scope of analytical chemistry.
• Analyse and interpret experimental data and present them in a structured report using appropriate scientific referencing.
• Analyse and critique experimental data and present them in oral format.
• Process and analyse chemical experimental data to draw scientifically sound conclusions, particularly the significance and validity of analytical results involving real-life samples.
• Communicate analytical chemical knowledge by appropriately documenting the essential details of procedures undertaken, key observations, results and conclusions.

1 If you need help with your assignment, please contact:

• the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
• the Learning Skills Unit for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Lecture notes, laboratory notes, tutorial videos and assignments can all be downloaded from iLearn.

Recommended references (all available in University Library):

Unit guide CHEM6231 Advanced Analysis

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Analytical Chemistry and Measurement</td>
<td>AGB, YW</td>
</tr>
<tr>
<td>2</td>
<td>Statistical Methods in Analytical Chemistry</td>
<td>YW</td>
</tr>
<tr>
<td>3</td>
<td>Calibration and Metrology, Regulations and Standards.</td>
<td>AGB</td>
</tr>
<tr>
<td>4</td>
<td>Advanced Spectroscopy</td>
<td>AR</td>
</tr>
<tr>
<td>5</td>
<td>Mass Spectroscopy</td>
<td>AGB</td>
</tr>
<tr>
<td>6</td>
<td>Atomic Adsorption</td>
<td>IJ</td>
</tr>
<tr>
<td>7</td>
<td>Electrochemistry 1</td>
<td>AEGB</td>
</tr>
<tr>
<td>8</td>
<td>Electrochemistry 2</td>
<td>AEGB</td>
</tr>
<tr>
<td>9</td>
<td>Scattering 1</td>
<td>AEGB</td>
</tr>
<tr>
<td>10</td>
<td>Scattering 2</td>
<td>AEGB</td>
</tr>
<tr>
<td>11</td>
<td>Analytical Microscopy</td>
<td>AEGB</td>
</tr>
<tr>
<td>12</td>
<td>Gravimetric Analysis and Chemometrics</td>
<td>AEGB</td>
</tr>
<tr>
<td>13</td>
<td>Revision Lectures</td>
<td>AEGB</td>
</tr>
</tbody>
</table>

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to help you improve your marks and take control of your study.

- Getting help with your assignment
- Workshops
- StudyWise
- Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

If you are a Global MBA student contact globalmba.support@mq.edu.au
Equity Support
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.