General Information

Unit convenor and teaching staff
Unit convener
Maina Mbui
joseph.mbui@mq.edu.au
Contact via 02 9850 9448
12 Wallys Walk 405
Email to schedule an appointment

Lecturer
Michael Chang
michael.chang@mq.edu.au
Contact via +61 2 9850 8158
12 wallys Walk 406
Email to schedule an appointment

Lecturer
Yingjie Yang
yingjie.yang@mq.edu.au
Contact via +61 2 9850 8414

Lecturer
Steven Hansen
steven.hansen@mq.edu.au
Contact via +61 2 9850 8423

Credit points
10

Prerequisites
40cp at 1000 level or above

Corequisites

Co-badged status
ENVS6364
Unit description
This unit provides students with a comprehensive introduction to the rapidly evolving field of geospatial technologies, including geographic information systems (GIS), global positioning systems (GPS) and remote sensing. Students will develop broad theoretical skills in geospatial technologies, and practical skills for acquiring and managing spatial data, analysing, visualising and synthesising spatial data, and the principles for applying these skills to real-world problems across a range of disciplines, including environmental science and management, physical and human geography, urban planning, biodiversity conservation, archaeology, health, business and marketing. Adding geospatial technology skills to your undergraduate or graduate program can help you identify new areas of research and applications thereby strengthening your career prospects.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

- **ULO1**: Perform operations using Geographic Information Systems (GIS) and Remote Sensing software
- **ULO2**: Organise, analyse and interpret geographic or spatial information using a range of techniques
- **ULO3**: Identify and define key concepts and principles of Geographic Information Science, including scale, projections, interactions and interdependence
- **ULO4**: Use geographic spatial analysis to effectively communicate through maps and reports
- **ULO5**: Utilise standard Geographic Information Science concepts and analytical techniques to develop applications

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Assignment 1</td>
<td>15%</td>
<td>No</td>
<td>15 March 2021</td>
</tr>
<tr>
<td>Practical Assignment 2</td>
<td>25%</td>
<td>No</td>
<td>26 April 2021</td>
</tr>
<tr>
<td>Practical Assignment 3</td>
<td>30%</td>
<td>No</td>
<td>31 May 2021</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>No</td>
<td>TBA</td>
</tr>
</tbody>
</table>
Practical Assignment 1

Assessment Type: Practice-based task
Indicative Time on Task: 10 hours
Due: 15 March 2021
Weighting: 15%

Getting started with GIS. This is a computer-based practical exercise.

On successful completion you will be able to:

- Perform operations using Geographic Information Systems (GIS) and Remote Sensing software
- Organise, analyse and interpret geographic or spatial information using a range of techniques
- Utilise standard Geographic Information Science concepts and analytical techniques to develop applications

Practical Assignment 2

Assessment Type: Practice-based task
Indicative Time on Task: 20 hours
Due: 26 April 2021
Weighting: 25%

Computer-based practical exercise. A report is submitted at the end of the practical.

On successful completion you will be able to:

- Perform operations using Geographic Information Systems (GIS) and Remote Sensing software
- Organise, analyse and interpret geographic or spatial information using a range of techniques
- Identify and define key concepts and principles of Geographic Information Science, including scale, projections, interactions and interdependence
- Use geographic spatial analysis to effectively communicate through maps and reports
- Utilise standard Geographic Information Science concepts and analytical techniques to develop applications
Practical Assignment 3

Assessment Type 1: Practice-based task
Indicative Time on Task 2: 22 hours
Due: 31 May 2021
Weighting: 30%

Computer-based practical exercise

On successful completion you will be able to:
- Perform operations using Geographic Information Systems (GIS) and Remote Sensing software
- Organise, analyse and interpret geographic or spatial information using a range of techniques
- Identify and define key concepts and principles of Geographic Information Science, including scale, projections, interactions and interdependence
- Use geographic spatial analysis to effectively communicate through maps and reports
- Utilise standard Geographic Information Science concepts and analytical techniques to develop applications

Final Exam

Assessment Type 1: Examination
Indicative Time on Task 2: 4 hours
Due: TBA
Weighting: 30%

Covers all material from the lectures and practical classes

On successful completion you will be able to:
- Perform operations using Geographic Information Systems (GIS) and Remote Sensing software
- Organise, analyse and interpret geographic or spatial information using a range of techniques
- Identify and define key concepts and principles of Geographic Information Science, including scale, projections, interactions and interdependence
Use geographic spatial analysis to effectively communicate through maps and reports

1 If you need help with your assignment, please contact:

 • the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
 • the Learning Skills Unit for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

ENVS2364 is an introductory course to Geographic Information Systems (GIS). It provides students with a comprehensive introduction to geospatial technologies, including GIS, Global Positioning Systems (GPS) and Remote Sensing. Students will learn core concepts and principles of GIS, and develop technical skills in data acquisition and management, mapping, spatial sampling and analysis. Students are trained using the latest commercial geospatial softwares.

ENVS2364 lectures cover a range of topics which are key to one becoming competent in Geographic Information Science. These include a background on how the shape of the earth impacts on mapping, also referred to as coordinate systems and map projections, creating and collecting GIS data, spatial analysis using different GIS data types, the art of map making, remote sensing and working with three-dimensional features or data. The practical classes are designed to expose students practice and apply standard GIS concepts and techniques to a range of disciplines, including environmental science and management, physical and human geography, urban planning, biodiversity conservation, archaeology, health, business and marketing.

Delivery

This unit is offered in weekday attendance and fully online modes.

Lecture program and location

There is one 1 hour lecture per week. Please check lecture times and rooms at the Macquarie University timetables website (www.timetables.mq.edu.au). Lectures are recorded and posted on the iLearn via Echo360. Weekday attendance students are expected to attend lectures in person; virtual/online attendance is available via the links provided on the iLearn. Lecture recordings will also be made available on the iLearn.

Practical program and location

Weekday attendance: Students are enrolled to one 3 hour practical class per week. Please check practical times and rooms at the Macquarie University timetables website (www.timetables.mq.edu.au). Practical class sizes are limited by the number of available computers. You must use the online enrolment system to change the time/day of your practical
class. Practical classes begin in Week 1.

Fully online attendance: You must have a home computer with a Windows operating system (Windows 7 or above). Please note that ArcGIS software is NOT supported by Mac or Linux operating systems. Also, we don't provide IT support for installation to Mac or Linux platforms. A copy of the ArcGIS software will be provided to external students. You must install this software on your computer. Internal students may also request a copy of the software and license to install to their personal computers. ArcGIS can also be accessed remotely on Appstream platform. More information on accessing GOS software on Appstream platform is provided on the iLearn.

Submission of assignments and progress tasks

All students are required to keep a backup of the submitted version of their assessments.

Assignments should be in a MS Word or PDF file format. All maps and tables associated with the assignment must be incorporated in the MS Word document or PDF.

Students are not permitted to email their assignments or submit them in a softcopy format. Assignments are to be submitted via the Turnitin link provided in iLearn by the date and time specified.

Late Submission

Late submissions will attract a penalty of 5% of the available marks per day after the original assessment due date until the mark becomes 0%. Assessment more than 7 days late will receive a mark of zero for non-submissions. Extensions will be granted in cases of documented illness or extenuating circumstances, and when applied for BEFORE the assessment deadline.

Applications for assessment extensions are now to be applied online via the student portal. Please follow the instructions outlined at https://students.mq.edu.au/study/my-study-program/special-consideration. Extension requests received via email or after the due date will not be processed.

Please be aware that there is a minimum processing time of 2 working days for all extension requests. If you submit your request on the due date of the assessment item, we cannot guarantee that you will receive a response by the assessment deadline. Where possible, please factor this in when submitting your extension application.

Return of marked assignments

Your assignments will be returned via iLearn within two teaching weeks of the submission, and will include written feedback.

Requirements to complete this unit satisfactory

1. Attend lecture and practical classes (weekday attendance students);
2. Complete all assignments and the final exam; and
3. Acquire a pass grade or above.

Grades for the unit as a whole will be awarded according to the following general criteria (course rubric):
Developing

Has not yet reached the desired standard. Limited understanding of required concepts and knowledge.

A fail grade (or under some circumstances a conceded pass) would be given

Functional

Has reached basic academic standards. Work has limited translation of concepts and procedures to new contexts unless aided.

A pass grade would be awarded

Proficient

Has completely reached the standards expected. Can work independently in new contexts, adapting procedures to meet the context. Demonstrates awareness of own limitations.

A credit grade would be awarded.

Advanced

Has gone beyond the expected standards. Exhibits high levels of independence and can use concepts to generate new ways of completing procedures. Can engage in critical reflection.

A grade of distinction or high distinction would be awarded.

Resources

Technology used

This unit will use the online platform of Echo360 and iLearn, ArcGIS, Google Earth, MS Excel software, GPS, and online resources for the practical exercises. Other ESRI software and open source GIS software may also be used.

You will require access to a computer and broadband internet to complete this unit. The library computers and computer labs are available for casual use outside scheduled practical classes.

Internal students who have a home computer with a Windows operating system may obtain a copy of the ArcGIS software from the unit convenor. The ArcGIS software is NOT supported by Mac or Linux operating systems. It is not essential for weekday students to have ArcGIS installed on their home computer as the computers in the computer labs are available for casual use outside scheduled practical classes. However, students registered as fully online must have ArcGIS installed on their home computer. We are also trialing the remote access of ArcGIS by external students via Appstream. More information will be provided regarding this service.

Unit web page

This unit’s webpage will be available on iLearn. Information about how students can access iLearn can be found at: http://www.mq.edu.au/iLearn/student_info/index.htm

The iLearn page uses Macquarie University’s standard interface and has links, access to lectures (as audio files through Echo360, and as downloadable PDF presentations) and practical instructions. Important announcements will be made through iLearn, so check the ENVS2364 page regularly.

Information about how to access lecture recordings through the Echo360 EchoCenter page in iLearn can be found at: http://mq.edu.au/iLearn/student_info/lecture_recordings.htm

Recommended texts/materials

Highly recommend a fast USB Flash Storage Drive (4GB is adequate) for GIS Practicals; if your computer supports USB3 then I would further suggest a USB3 storage drive as the GIS Lab PC’s
support USB3.

Access to required and recommended resources, plus past central exam papers, is available at the Macquarie Library website (https://www.mq.edu.au/about/campus-services-and-facilities/library/multi-search/multisearch).

GIS Desktop Software. The University has a site license for ESRI's ArcGIS (www.arcgis.com) which may be installed on a Windows PC with reasonable specs (i.e. 4GB RAM and 2.2 GHz CPU).

The Khan Academy has many short instructional videos on a range of topics; the statistics (Maths) and SQL (Computing, Programming) provide background learning relevant to GIS.

http://www.khanacademy.org

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Description</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Geographic Information Science: what is GIS, what is it used for?</td>
<td>Assignment 1</td>
</tr>
<tr>
<td>2</td>
<td>Types of GIS data: Vector and Raster data</td>
<td>Assignment 1</td>
</tr>
<tr>
<td>3</td>
<td>Planet Earth is not, in fact, perfectly round: Coordinate systems and map projections</td>
<td>Assignment 1</td>
</tr>
<tr>
<td>4</td>
<td>Spatial Analyses using Vector data</td>
<td>Assignment 2</td>
</tr>
<tr>
<td>5</td>
<td>Spatial Analyses using Raster data</td>
<td>Assignment 2</td>
</tr>
<tr>
<td>6</td>
<td>Capturing physical features on earth surface using GIS</td>
<td>Assignment 2</td>
</tr>
<tr>
<td></td>
<td>Semester Break</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Careers in GIS (and in general) - delivered by Professional Australia</td>
<td>Assignment 2</td>
</tr>
<tr>
<td>8</td>
<td>Starting a GIS Project: Data Flow Diagrams & ModelBuilder, ArcGIS Pro/Online</td>
<td>Assignment 3</td>
</tr>
</tbody>
</table>
Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Grade Appeal Policy
- Complaint Management Procedure for Students and Members of the Public
- Special Consideration Policy (Note: The Special Consideration Policy is effective from 4 December 2017 and replaces the Disruption to Studies Policy.)

Students seeking more policy resources can visit the [Student Policy Gateway](https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit [Policy Central](https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the
University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to help you improve your marks and take control of your study.

- Getting help with your assignment
- Workshops
- StudyWise
- Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

If you are a Global MBA student contact globalmba.support@mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering

Course Changes as informed by Previous Student Feedback

Geo-scripting using R software in Weeks 11 & 12 has been replaced with case study on solving GIS problems.