BIOL1110
Genes to Organisms
Session 2, In person-scheduled-intensive, North Ryde 2022
School of Natural Sciences

Contents
General Information ... 2
Learning Outcomes .. 3
General Assessment Information 3
Assessment Tasks .. 3
Delivery and Resources ... 6
Unit Schedule .. 8
Policies and Procedures ... 10

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit Convener
Jaco Le Roux
biol1110@mq.edu.au

Unit Administrator
Jessica O'Hare
biol1110@mq.edu.au

Credit points
10

Prerequisites

Corequisites

Co-badged status

Unit description
This unit deals with the nuts and bolts of life on earth. Throughout the unit there is a single
unifying theme - that all of the processes that give rise to life are derived from DNA. We show
students that DNA controls life by acting as a blueprint for the construction of proteins, and
that those proteins build cells which act as the basic structural and functional units of all life.
To demonstrate these processes to students, we start by talking about the structure and
function of DNA to show how it can act as a simple code for the construction of proteins.
Students are then shown how proteins are constructed from the DNA code, and how those
proteins can be used to build and maintain cells. Having established these basic principles,
the unit then goes on to explain how cells construct multicellular organisms during
development, and how the proper functioning of those organisms is maintained by regulating
cellular activity. We also demonstrate that the DNA code is essentially immortal because it
can be copied from generation to generation, from cell to cell.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are
available at https://www.mq.edu.au/study/calendar-of-dates
Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: Define how biological information is encoded in the structure of the genetic molecule, DNA
ULO2: Describe how large macromolecules, such as nucleic acids and proteins are constructed from simpler building blocks
ULO3: Explain how eukaryotic cells are constructed, in terms of the structure and functions of organelles
ULO4: Describe how genetic information is transmitted through the generations, and the evolutionary process
ULO5: Discuss modern applications of genetics and genomics
ULO6: Analyse scientific data and use the basic elements of scientific writing to write reports

General Assessment Information

Late Assessment Submission Penalty

From 1 July 2022, Students enrolled in Session based units with written assessments will have the following university standard late penalty applied. Please see https://students.mq.edu.au/study/assessment-exams/assessments for more information.

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. Submission time for all written assessments is set at 11:55 pm. A 1-hour grace period is provided to students who experience a technical concern.

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, students need to submit an application for Special Consideration.

Assessments where Late Submissions will be accepted

In this unit, late submissions will accepted as follows:

- All assessments - YES, Standard Late Penalty applies

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-semester test</td>
<td>15%</td>
<td>No</td>
<td>20/09/2022</td>
</tr>
</tbody>
</table>
Name | Weighting | Hurdle | Due
--- | --- | --- | ---
Practical quizzes | 10% | No | Weekly (Mondays @12pm)
Database project | 10% | No | Sep 5, Oct 17, Nov 7 2022 (@5pm on all due dates)
Paper dissection | 25% | No | 03/10/2022
Final exam | 40% | No | Formal exam period (exact date TBA)

Mid-semester test

Assessment Type: Quiz/Test
Indicative Time on Task: 13 hours
Due: **20/09/2022**
Weighting: **15%**

The mid-semester test will consist of multiple choice questions covering all lecture material up discussed to that point. The test will be conducted online under timed conditions.

On successful completion you will be able to:
- Define how biological information is encoded in the structure of the genetic molecule, DNA
- Describe how large macromolecules, such as nucleic acids and proteins are constructed from simpler building blocks
- Describe how genetic information is transmitted through the generations, and the evolutionary process

Practical quizzes

Assessment Type: Quiz/Test
Indicative Time on Task: 10 hours
Due: **Weekly (Mondays @12pm)**
Weighting: **10%**

Pre-prac quizzes to test preparedness and comprehension.

On successful completion you will be able to:
• Define how biological information is encoded in the structure of the genetic molecule, DNA
• Describe how large macromolecules, such as nucleic acids and proteins are constructed from simpler building blocks
• Explain how eukaryotic cells are constructed, in terms of the structure and functions of organelles
• Describe how genetic information is transmitted through the generations, and the evolutionary process

Database project
Assessment Type 1: Report
Indicative Time on Task 2: 13 hours
Due: Sep 5, Oct 17, Nov 7 2022 (@5pm on all due dates)
Weighting: 10%

The PeerWise database will be available to students throughout the Session. Students must write and submit questions based upon lecture content, and answer questions of other students.

On successful completion you will be able to:
• Explain how eukaryotic cells are constructed, in terms of the structure and functions of organelles
• Describe how genetic information is transmitted through the generations, and the evolutionary process
• Discuss modern applications of genetics and genomics
• Analyse scientific data and use the basic elements of scientific writing to write reports

Paper dissection
Assessment Type 1: Report
Indicative Time on Task 2: 25 hours
Due: 03/10/2022
Weighting: 25%

A library of at least 10 public research papers will be made available to students. Students must select one paper (or choose a paper in which they are interested, with the approval of the convenors) and analyse the structure, underlying research, and implications of the paper, following the set of questions provided.
On successful completion you will be able to:

- Discuss modern applications of genetics and genomics
- Analyse scientific data and use the basic elements of scientific writing to write reports

Final exam

Assessment Type: Examination
Indicative Time on Task: 40 hours

Due: Formal exam period (exact date TBA)
Weighting: 40%

Assesses all material covered in practicals as well as the material in all lectures. This exam will be invigilated and held during the Formal Examination Period.

On successful completion you will be able to:

- Define how biological information is encoded in the structure of the genetic molecule, DNA
- Describe how large macromolecules, such as nucleic acids and proteins are constructed from simpler building blocks
- Explain how eukaryotic cells are constructed, in terms of the structure and functions of organelles
- Describe how genetic information is transmitted through the generations, and the evolutionary process
- Discuss modern applications of genetics and genomics

1 If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Lectures
(1) Two 1-hour online lecture recordings per week (starting in week 1). Recordings will be
guided online learning H5P modules. The class timetable for this unit can be found through
the Timetable portal. The two tabled slots for weekly lectures will be used for Zoom Q&A and
discussion sessions (optional attendance starting in week 2; you must listen to the lecture
recordings from the previous week before attending the Zoom session).

Practicals

There are nine practicals in this unit (see table under 'Unit Schedule' heading). All practicals will
be delivered in face-to-face mode. To check the availability of practicals for your unit, please go
to timetable viewer, before enrolling in eStudent. To check detailed information on unit
assessments, visit the unit iLearn site.

How to find the answers

1. Read the unit outline
2. Consult iLearn (often the majority of questions have already been asked)
3. All questions on lecture content should be posted on the iLearn forum. We will be
 monitoring the iLearn forum and ensuring all questions are correctly answered. If the
 answer to any course-related question will benefit the many please post it on iLearn.
4. Please email biol1110@mq.edu.au if you have any questions about:
 1. organising alternative times for assessments or extensions
 2. withdrawal from the unit
 3. personal issues affecting your study
 4. assignment dates
 5. practical class allocations
 6. mark queries
5. Please only approach Tutors with questions throughout practical sessions
6. Please only approach Lab technicians during practical classes and only with technical
 questions
7. Unexpected adjustments made during the course will be announced via iLearn
 announcements so make sure you check iLearn regularly.

iLearn

The primary means of communication for this unit is via iLearnTM and email
(biol1110@mq.edu.au). iLearn is a web-based computer-mediated communication package and
can be accessed by most web browsers from inside or outside the University.
Unit guide BIOL1110 Genes to Organisms

We expect you to use iLearn for:

- Regularly checking subject announcements (at least twice per week)
- Discussing the unit and its content with staff and other students
- Downloading Lecture and Practical materials
- Downloading reference materials

Logging in to iLearn

The URL for the iLearn login page is: https://ilearn.mq.edu.au/

You will need to log in to iLearn each time you use it. Your user name is your student number. If you are having trouble accessing your online unit due to a disability or health condition, please visit the Student Services Website https://students.mq.edu.au/support/personal or information on how to get assistance. If you are having problems logging on after ensuring you have entered your username and password correctly, you should contact Student IT Help, http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

TEXTBOOK - CAMPBELL BIOLOGY ELEVENTH EDITION (ANZ)

This textbook is available in hard copy from the Co-op Bookshop (ISBN 9781488626241), or electronically at http://www.pearson.com.au.

Unit Schedule

Lecture schedule

<table>
<thead>
<tr>
<th>Week of Session</th>
<th>Dates</th>
<th>Lectures (Online - H5P modules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25 - 31 Jul</td>
<td>Lecture 1: Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 2: The scientific method</td>
</tr>
<tr>
<td>2</td>
<td>1 - 7 Aug</td>
<td>Lecture 3: DNA: The molecule of heredity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 4: DNA replication</td>
</tr>
<tr>
<td>3</td>
<td>8 - 14 Aug</td>
<td>Lecture 5: Genes & Genomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 6: Transcription</td>
</tr>
<tr>
<td>4</td>
<td>15 - 21 Aug</td>
<td>Lecture 7: Translation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 8: Proteins</td>
</tr>
<tr>
<td>5</td>
<td>22 - 28 Aug</td>
<td>Lecture 9: Gene regulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 10: Chromosomes</td>
</tr>
<tr>
<td>6</td>
<td>29 Aug - 4 Sep</td>
<td>Lecture 11: The cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture 12: Mitosis</td>
</tr>
<tr>
<td>Week</td>
<td>Date Range</td>
<td>Lectures</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>5 - 11 Sep</td>
<td>Lecture 13: Meiosis</td>
</tr>
<tr>
<td></td>
<td>12 - 18 Sep</td>
<td>Mid-semester break</td>
</tr>
<tr>
<td></td>
<td>19 - 25 Sep</td>
<td>Mid-semester break</td>
</tr>
</tbody>
</table>
| 8 | 26 Sep - 2 Oct | Lecture 14: Mendelian genetics I
Lecture 15: Mendelian genetics II |
| 9 | 3 - 9 Oct | Lecture 16: Molecular evolution
Lecture 17: Population genetics |
| 10 | 10 - 16 Oct | Lecture 18: Genetic tools
Lecture 19: Biological membranes |
| 11 | 17 - 23 Oct | Lecture 20: Cell signalling
Lecture 21: Prokaryotes |
| 12 | 24 Oct - 30 Oct | Lecture 22: Revision |
| 13 | 31 - 6 Nov | Q&A zoom session (No lectures or practicals) |
| 14 | 7 - 13 Nov | No class - final exam |

Practical schedule

<table>
<thead>
<tr>
<th>Prac number/block session/date</th>
<th>Practical topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - BLOCK1 (20/08/2022)</td>
<td>The Cellular Basis of Life</td>
</tr>
<tr>
<td>2 - BLOCK1 (20/08/2022)</td>
<td>DNA</td>
</tr>
<tr>
<td>3 - BLOCK2 (21/08/2022)</td>
<td>Transcription & Translation</td>
</tr>
<tr>
<td>4 - BLOCK1 (20/08/2022)</td>
<td>Flagella Regeneration</td>
</tr>
<tr>
<td>5 - BLOCK3 (20/09/2022)</td>
<td>Protein Quantification</td>
</tr>
<tr>
<td>6 - BLOCK4 (21/09/2022)</td>
<td>Gene Expression - Lac operon</td>
</tr>
<tr>
<td>7 - BLOCK4 (21/09/2022)</td>
<td>Phylogeny & Bioinformatics</td>
</tr>
</tbody>
</table>
Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.
Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues

Student Enquiries

Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.