Students

STAT6110 – Statistical Inference

2022 – Session 2, Online-scheduled-In person assessment, Exam centre within Australia

General Information

Download as PDF
Unit convenor and teaching staff Unit convenor and teaching staff
Karol Binkowski
Credit points Credit points
10
Prerequisites Prerequisites
((MATH604 or MATH6904 or BCA802 or STAT8602) and (STAT670 or STAT6170) and (STAT680 or STAT6180) and (STAT683 or STAT6183)) or (Admission to MDataSc and (STAT670 or STAT6170) and (STAT680 or STAT6180))
Corequisites Corequisites
Co-badged status Co-badged status
Unit description Unit description
This unit introduces the fundamental principles of statistical inference and estimation theory. The unit begins with a discussion of random samples and their use in drawing inferences about a population. A discussion of estimation concepts is then provided, particularly unbiasedness, consistency and efficiency. Likelihood theory is developed, including the concept of sufficiency and the maximum likelihood approach to estimation. Hypothesis testing concepts and methods are discussed with a particular focus on likelihood ratio, score and Wald tests. The relative frequency interpretation of key concepts such as confidence intervals and p-values is emphasised. An introduction to Bayesian inference principles is also provided.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

  • ULO1: Apply random sampling concepts to make inferences about a population.
  • ULO2: Use estimation principles (including unbiasedness, consistency and relative efficiency) to assess the performance of inference procedures.
  • ULO3: Analyse a range of statistical inference contexts and evaluate how the concept of likelihood and the principle of maximum likelihood estimation can be applied.
  • ULO4: Use hypothesis testing approaches (including likelihood ratio tests, score tests and Wald tests) to carry out statistical tests in various contexts.
  • ULO5: Evaluate the relevance of the principles of Bayesian inference in various contexts, and apply them to solve inference problems.

General Assessment Information

ATTENDANCE and PARTICIPATION: Please contact the unit convenor as soon as possible if you have difficulty attending and participating in any classes. There may be alternatives available to make up the work. If there are circumstances that mean you will miss a class, you can apply for Special Consideration via ask.mq.edu.au

ASSIGNMENT SUBMISSION: Assignment submission will be online through the iLearn page.

Submit assignments online via the appropriate assignment link on the iLearn page. A personalised cover sheet is not required with online submissions. Read the submission statement carefully before accepting it as there are substantial penalties for making a false declaration.

  • Assignment submission is via iLearn. You should upload this as a single scanned PDF file.
  • Please note the quick guide on how to upload your assignments provided on the iLearn page.
  • Please make sure that each page in your uploaded assignment corresponds to only one A4 page (do not upload an A3 page worth of content as an A4 page in landscape). If you are using an app like Clear Scanner, please make sure that the photos you are using are clear and shadow-free.
  • It is your responsibility to make sure your assignment submission is legible.
  • If there are technical obstructions to your submitting online, please email us to let us know.

You may submit as often as required prior to the due date/time. Please note that each submission will completely replace any previous submissions. It is in your interests to make frequent submissions of your partially completed work as insurance against technical or other problems near the submission deadline.

LATE ASSESSMENT SUBMISSION PENALTY

From 1 July 2022, Students enrolled in Session based units with written assessments will have the following late penalty applied. Please see https://students.mq.edu.au/study/assessment-exams/assessments for more information. 

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. Submission time for all written assessments is set at 11:55 pm. A 1-hour grace period is provided to students who experience a technical concern. 

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, students need to submit an application for Special Consideration.   Assessments where Late Submissions will be accepted  In this unit, late submissions will accepted as follows: 

Assignment 1, 2, 3: YES, Standard Late Penalty applies

FINAL EXAM POLICY: It is Macquarie University policy not to set early examinations for individuals or groups of students. All students are expected to ensure that they are available until the end of the teaching semester, that is, the final day of the official examination period. The only excuse for not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these special circumstances, you may apply for special consideration via ask.mq.edu.au.

If you receive special consideration for the final exam, a supplementary exam will be scheduled in the interval between the regular exam period and the start of the next session. By making a special consideration application for the final exam you are declaring yourself available for a resit during this supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application.

You can check the supplementary exam information page on FSE101 in iLearn (bit.ly/FSESupp) for dates, and approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

Assessment Tasks

Name Weighting Hurdle Due
Assignment 1 15% No Week 4
Assignment 2 15% No Week 8
Assignment 3 15% No Week 11
Final Exam 55% No University examination period

Assignment 1

Assessment Type 1: Quantitative analysis task
Indicative Time on Task 2: 10 hours
Due: Week 4
Weighting: 15%

 

Students are required to submit their assignments (pdf documents) before the due time. Students will submit their assignments via a link on iLearn.

 


On successful completion you will be able to:
  • Apply random sampling concepts to make inferences about a population.
  • Use estimation principles (including unbiasedness, consistency and relative efficiency) to assess the performance of inference procedures.

Assignment 2

Assessment Type 1: Quantitative analysis task
Indicative Time on Task 2: 10 hours
Due: Week 8
Weighting: 15%

 

Students are required to submit their assignments (pdf documents) before the due time. Students will submit their assignments via a link on iLearn.

 


On successful completion you will be able to:
  • Analyse a range of statistical inference contexts and evaluate how the concept of likelihood and the principle of maximum likelihood estimation can be applied.

Assignment 3

Assessment Type 1: Quantitative analysis task
Indicative Time on Task 2: 10 hours
Due: Week 11
Weighting: 15%

 

Students are required to submit their assignments (pdf documents) before the due time. Students will submit their assignments via a link on iLearn.

 


On successful completion you will be able to:
  • Use hypothesis testing approaches (including likelihood ratio tests, score tests and Wald tests) to carry out statistical tests in various contexts.
  • Evaluate the relevance of the principles of Bayesian inference in various contexts, and apply them to solve inference problems.

Final Exam

Assessment Type 1: Examination
Indicative Time on Task 2: 12 hours
Due: University examination period
Weighting: 55%

 

Formal invigilated examination testing the learning outcomes of the unit.

 


On successful completion you will be able to:
  • Apply random sampling concepts to make inferences about a population.
  • Use estimation principles (including unbiasedness, consistency and relative efficiency) to assess the performance of inference procedures.
  • Analyse a range of statistical inference contexts and evaluate how the concept of likelihood and the principle of maximum likelihood estimation can be applied.
  • Use hypothesis testing approaches (including likelihood ratio tests, score tests and Wald tests) to carry out statistical tests in various contexts.
  • Evaluate the relevance of the principles of Bayesian inference in various contexts, and apply them to solve inference problems.

1 If you need help with your assignment, please contact:

  • the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
  • the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Off-shore students must email the convenor as soon as possible to discuss study options.

For each week, there is a one-hour lecture (on-campus and online) when students can ask questions. There will also be another pre-recorded lecture that students should watch each week at their own convenient time.

There is also one 2-hour SGTA class each week to attend, either on-campus or online - check the timetable for options.

Unit Schedule

Week

Topic

Work Due

2 - 3 Large sample probability concepts  
 4 Estimation concepts A1 - wk 4
 5 - 6 Likelihood  
Session Break
7 - 8 Estimation methods  
8 - 9 Hypothesis testing concepts A2 - wk 8
10 - 11 Hypothesis testing methods A3 - wk 11
12 Bayesian inference  
13 Revision

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

The Library provides online and face to face support to help you find and use relevant information resources. 

Student Services and Support

Macquarie University offers a range of Student Support Services including:

Student Enquiries

Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.


Unit information based on version 2022.03 of the Handbook