# BIOL3110

## Evolutionary and Conservation Genetics

Session 1, In person-scheduled-infrequent, North Ryde 2022

*School of Natural Sciences*

## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>2</td>
</tr>
<tr>
<td>General Assessment Information</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>3</td>
</tr>
<tr>
<td>Delivery and Resources</td>
<td>7</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>7</td>
</tr>
</tbody>
</table>

**Disclaimer**

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Adam Stow
adam.stow@mq.edu.au

Caitlin Kordis
caitlin.kordis@mq.edu.au

Credit points
10

Prerequisites
130cp at 1000 level or above including BIOL2110 or BIOL206

Corequisites

Co-badge status

Unit description
Ongoing advances in molecular technology, statistics and bioinformatics have revolutionized our ability to gather and apply genetic information. This unit deals with the distribution of genetic variation among individuals, populations and species, and the relevance of such variation to evolutionary processes. Specific topics include selection and adaptive potential; mutation; inbreeding; population divergence; speciation; effective population size and extinction risk. Approaches to the study of genetic variation are explored at levels ranging from pedigree analysis to molecular genomics. Particular emphasis is placed on the importance of evolutionary genetics to the conservation, management and restoration of wild populations.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: Explain why and how genetic factors have key importance in conservation biology

ULO2: Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
ULO3: Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics

ULO4: Apply conservation genetic theory in order to propose management strategies for both wild and captive populations

ULO5: Synthesise and evaluate information on contemporary topics in conservation and evolutionary genetics

General Assessment Information

Online quizzes, in-class activities, or scheduled tests and exam must be undertaken at the time indicated in the unit guide. Should these activities be missed due to illness or misadventure, students may apply for Special Consideration.

All other assessments must be submitted by 5:00 pm on their due date. Should these assessments be missed due to illness or misadventure, students should apply for Special Consideration.

Assessments not submitted by the due date will receive a mark of zero unless late submissions are specifically allowed as indicated in the unit guide or on iLearn.

If late submissions are permitted as indicated in the unit guide or on iLearn a consistent penalty will be applied for late submissions as follows:

A 12-hour grace period will be given after which the following deductions will be applied to the awarded assessment mark: 12 to 24 hours late = 10% deduction; for each day thereafter, an additional 10% per day or part thereof will be applied until five days beyond the due date. After this time, a mark of zero (0) will be given. For example, an assessment worth 20% is due 5 pm on 1 January. Student A submits the assessment at 1 pm, 3 January. The assessment received a mark of 15/20. A 20% deduction is then applied to the mark of 15, resulting in the loss of three (3) marks. Student A is then awarded a final mark of 12/20.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commentary Article</td>
<td>5%</td>
<td>Yes</td>
<td>Week 3; 7/3/22</td>
</tr>
<tr>
<td>Seminar</td>
<td>15%</td>
<td>No</td>
<td>week 9; 4/5/22</td>
</tr>
<tr>
<td>Problem Tests</td>
<td>30%</td>
<td>No</td>
<td>Week 6; 6/4/22 and Week 9; 4/5/22</td>
</tr>
<tr>
<td>Final Examination</td>
<td>30%</td>
<td>No</td>
<td>TBA</td>
</tr>
<tr>
<td>Scientific Report</td>
<td>20%</td>
<td>No</td>
<td>Week 11; 16/5/22</td>
</tr>
</tbody>
</table>
Commentary Article

Assessment Type 1: Professional writing
Indicative Time on Task 2: 6 hours
Due: Week 3; 7/3/22
Weighting: 5%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

You are required to write a short commentary article on a published paper dealing with genetic variation and conservation. This will require a short literature search to identify a relevant paper from among the leading journals in conservation genetics (incl. Science, Nature, PNAS, PLOS biology, Evolution, Molecular Ecology, Conservation Biology, Conservation Genetics + many others). You should then familiarize yourself with the paper and its methodologies and write a commentary in the style of those appearing in the 'Perspectives' section of the journal Science. This is an early assessment task, with assessment criteria weighted for participation and genuine effort (given the early stage of unit material delivery). You will submit this assignment via TURNITIN.

On successful completion you will be able to:

- Explain why and how genetic factors have key importance in conservation biology
- Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
- Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics
- Apply conservation genetic theory in order to propose management strategies for both wild and captive populations
- Synthesise and evaluate information on contemporary topics in conservation and evolutionary genetics

Seminar

Assessment Type 1: Presentation
Indicative Time on Task 2: 8 hours
Due: week 9; 4/5/22
Weighting: 15%

You are required to give an oral presentation using Powerpoint, based on one to several topical research paper(s) in conservation/ecological genetics. Conference presentations are a primary
means of communicating knowledge in science, and these sessions will be conducted in the manner of a formal scientific conference. Time limits will be strictly enforced, and will constitute part of the assessment criteria for this task.

On successful completion you will be able to:

• Explain why and how genetic factors have key importance in conservation biology
• Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
• Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics
• Apply conservation genetic theory in order to propose management strategies for both wild and captive populations
• Synthesise and evaluate information on contemporary topics in conservation and evolutionary genetics

Problem Tests
Assessment Type 1: Quiz/Test
Indicative Time on Task 2: 16 hours
Due: Week 6; 6/4/22 and Week 9; 4/5/22
Weighting: 30%

Students will submit two mathematical problem sets based tutorial work.

On successful completion you will be able to:

• Explain why and how genetic factors have key importance in conservation biology
• Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
• Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics

Final Examination
Assessment Type 1: Examination
Indicative Time on Task 2: 38 hours
Due: TBA
Weighting: 30%
You will be tested on your knowledge of course content, including information from all lectures and tutorials, plus prescribed reading from the textbook (Frankham et al.) and other sources. No mathematical problem solving will be required in this examination. Check online (www.mq.edu.au) for scheduling updates towards the end of the teaching session.

On successful completion you will be able to:

• Explain why and how genetic factors have key importance in conservation biology
• Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
• Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics
• Apply conservation genetic theory in order to propose management strategies for both wild and captive populations
• Synthesise and evaluate information on contemporary topics in conservation and evolutionary genetics

Scientific Report
Assessment Type 1: Report
Indicative Time on Task 2: 34 hours
Due: Week 11; 16/5/22
Weighting: 20%

You are required to prepare a scientific manuscript based on the data analysed in the computer lab tutorial. Your manuscript should structured according to the author instructions for ‘original articles’ in the journal Evolution:

http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291558-5646/homepage/ForAuthors.html

This will be submitted via TURNITIN. Further information, discussion and resources (including a marking rubric) will be provided prior to and during the computer lab tutorial.

On successful completion you will be able to:

• Explain why and how genetic factors have key importance in conservation biology
• Explain the importance of genetic diversity, and identify the phenomena that influence and maintain genetic diversity in populations
• Identify and apply appropriate statistical formulae to solve questions in conservation and evolutionary genetics
• Apply conservation genetic theory in order to propose management strategies for both wild and captive populations
• Synthesise and evaluate information on contemporary topics in conservation and evolutionary genetics

1 If you need help with your assignment, please contact:
   • the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
   • the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Lectures will be pre recorded and available online. Tutorials will be available face-to-face or online during the scheduled time. Resources will be made available on iLearn.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

• Academic Appeals Policy
• Academic Integrity Policy
• Academic Progression Policy
• Assessment Policy
• Fitness to Practice Procedure
• Assessment Procedure
• Complaints Resolution Procedure for Students and Members of the Public
• Special Consideration Policy

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.
Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: [https://students.mq.edu.au/admin/other-resources/student-conduct](https://students.mq.edu.au/admin/other-resources/student-conduct)

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit [ask.mq.edu.au](http://ask.mq.edu.au) or if you are a Global MBA student contact [globalmba.support@mq.edu.au](mailto:globalmba.support@mq.edu.au)

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit [http://students.mq.edu.au/support/](http://students.mq.edu.au/support/)

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- Accessibility and disability support with study
Student Enquiries
Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.