

PHYS3140

Advanced Quantum Mechanics and Quantum Optics

Session 2, In person-scheduled-weekday, North Ryde 2022

School of Mathematical and Physical Sciences

Contents

General Information	2
Learning Outcomes	2
Assessment Tasks	3
Delivery and Resources	4
Policies and Procedures	5
General Assessment Information	6

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff Alexei Gilchrist alexei.gilchrist@mq.edu.au

Thomas Volz thomas.volz@mq.edu.au

Credit points 10

Prerequisites PHYS303 or PHYS3130 or PHYS2030

Corequisites

Co-badged status

Unit description

Quantum mechanics is perhaps the most fundamental of all theories of modern physics. While its consequences are most readily seen in the microscopic world of elementary particles, atoms and molecules; quantum mechanics provides a set of rules that apply to all physical phenomena: the universe as a whole is governed by its laws. This unit looks at quantum mechanics in greater depth than PHYS3130/PHYS2030 and from a more foundational perspective. After introducing the postulates of quantum theory, we consider the basic mathematical structures including Hilbert Space, the Dirac notation, linear operators, spectral theory and measurements. Tools for the description of multiple systems and statistical combinations of systems are introduced allowing the exploration of entanglement - arguably the most dramatic departure from classical physics. In the second half of the unit Quantum Optics is introduced, which has widespread applications and has played a central role in testing quantum mechanics and exploring its meaning. In this section we cover quantization of the optical field, introduce coherent states and describe the physics behind the quantum interaction of light and atoms.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: describe and apply the Hilbert space formalism of quantum mechanics.

ULO2: model the combination and removal of physical systems.

ULO3: use density operators to describe the statistical properties of quantum mechanics.

ULO4: explain how measurements are described and used in quantum mechanics.

Assessment Tasks

Name	Weighting	Hurdle	Due
Assignments	25%	No	Throughout the semester, due date indicated on Assignment
Midsession exam	25%	No	Week 7
Final exam	50%	No	Seemester examination period

Assignments

Assessment Type 1: Problem set Indicative Time on Task 2: 36 hours Due: **Throughout the semester, due date indicated on Assignment** Weighting: **25%**

Weekly problem-solving assignments

On successful completion you will be able to:

- describe and apply the Hilbert space formalism of quantum mechanics.
- model the combination and removal of physical systems.
- use density operators to describe the statistical properties of quantum mechanics.
- explain how measurements are described and used in quantum mechanics.

Midsession exam

Assessment Type 1: Quiz/Test Indicative Time on Task 2: 15 hours Due: **Week 7** Weighting: **25%** Exam on the content from the first half of the unit.

On successful completion you will be able to:

- describe and apply the Hilbert space formalism of quantum mechanics.
- model the combination and removal of physical systems.
- use density operators to describe the statistical properties of quantum mechanics.
- explain how measurements are described and used in quantum mechanics.

Final exam

Assessment Type 1: Examination Indicative Time on Task 2: 20 hours Due: **Seemester examination period** Weighting: **50%**

Exam in the University Examination period.

On successful completion you will be able to:

- describe and apply the Hilbert space formalism of quantum mechanics.
- model the combination and removal of physical systems.
- use density operators to describe the statistical properties of quantum mechanics.
- explain how measurements are described and used in quantum mechanics.

¹ If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.

² Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

Delivery will be through Lectures and tutorials. Lecture notes are available online together with solved problems and recorded lectures.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policie s.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit <u>Student Policies</u> (<u>https://students.mq.edu.au/support/study/policies</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit <u>Policy Central</u> (<u>https://policies.mq.e</u> <u>du.au</u>) and use the <u>search tool</u>.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than <u>eStudent</u>, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <u>eStudent</u>. For more information visit <u>ask.mq.edu.au</u> or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe <u>academic integrity</u> – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free <u>online writing an</u> d maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit <u>http://stu</u> dents.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- · Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- · Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- · Social support including information about finances, tenancy and legal issues

Student Enquiries

Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit <u>http://www.mq.edu.au/about_us/</u>offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

General Assessment Information

Late Assessment Submission Penalty

From 1 July 2022, Students enrolled in Session based units with written assessments will have the following university standard late penalty applied. Please see <u>https://students.mq.edu.au/stud</u> <u>y/assessment-exams/assessments</u> for more information.

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. Submission time for all written assessments is set at **11:55 pm**. A 1-hour grace period is provided to students who experience a technical concern.

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, students need to submit an application for Special Consideration.

Assessments where Late Submissions will be accepted

In this unit, late submissions will accepted as follows:

- Assignments YES, Standard Late Penalty applies
- Midsession exam NO, unless Special Consideration is Granted
- Final exam NO, Midsession exam NO, unless Special Consideration is Granted