COMP2300
Applied Cryptography
Session 1, In person-scheduled-weekday, North Ryde 2022
School of Computing

Contents

General Information 2
Learning Outcomes 2
General Assessment Information 3
Assessment Tasks 3
Delivery and Resources 6
Unit Schedule 7
Policies and Procedures 8
Grading Standards 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Convenor, Lecturer
Hassan Asghar
hassan.asghar@mq.edu.au
Contact via Email
School of Computing, 4 RPD, BD Building

Credit points
10

Prerequisites
(COMP1010 or COMP125) and (DMTH137 or MATH1007 or DMTH237)

Corequisites
Co-badged status
COMP6300

Unit description
This unit provides an introduction to modern applied cryptography. It deals with the concepts and techniques behind cryptographic primitives, such as hash functions, symmetric-key ciphers, public-key cryptography and digital signatures. It then explains the concept of cryptanalysis before addressing important cryptographic protocols. The unit concludes with a review of existing applications including blockchain and cryptocurrencies, electronic voting schemes, executable code signing, full disk encryption, etc.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: Explain the concepts and principles on which modern cryptography relies upon.
ULO2: Employ adapted cryptographic tools and techniques to encrypt, decrypt and sign messages.
ULO3: Decipher simple encrypted messages using a range of cryptanalysis methods.
ULO4: Apply cryptographic technologies and protocols to increase data security and protect privacy.
General Assessment Information

Late submissions will be accepted but will incur a penalty unless there is an approved Special Consideration request. A 12-hour grace period will be given after which the following deductions will be applied to the awarded assessment mark: 12 to 24 hours late = 10% deduction; for each day thereafter, an additional 10% per day or part thereof will be applied until five days beyond the due date. After this time, a mark of zero (0) will be given. For example, an assessment worth 20% is due 5 pm on 1 January. Student A submits the assessment at 1 pm, 3 January. The assessment received a mark of 15/20. A 20% deduction is then applied to the mark of 15, resulting in the loss of three (3) marks. Student A is then awarded a final mark of 12/20.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Tasks</td>
<td>10%</td>
<td>Yes</td>
<td>Every Week</td>
</tr>
<tr>
<td>Module Exam #1</td>
<td>20%</td>
<td>No</td>
<td>Week 5</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>15%</td>
<td>No</td>
<td>Week 7</td>
</tr>
<tr>
<td>Module Exam #2</td>
<td>20%</td>
<td>No</td>
<td>Week 9</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>15%</td>
<td>No</td>
<td>Week 12</td>
</tr>
<tr>
<td>Module Exam #3</td>
<td>20%</td>
<td>No</td>
<td>Week 13</td>
</tr>
</tbody>
</table>

Weekly Tasks

Assessment Type: Quiz/Test

Indicative Time on Task: 5 hours

Due: Every Week

Weighting: 10%

This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

Each week, a set of exercises will be available online. Some require written submissions, while some are multiple choice. Your solutions should be submitted electronically via iLearn before the deadline specified in the text.

On successful completion you will be able to:

- Explain the concepts and principles on which modern cryptography relies upon.
- Employ adapted cryptographic tools and techniques to encrypt, decrypt and sign messages.
- Decipher simple encrypted messages using a range of cryptanalysis methods.
Apply cryptographic technologies and protocols to increase data security and protect privacy.

Module Exam #1
Assessment Type: Examination
Indicative Time on Task: 10 hours
Due: Week 5
Weighting: 20%

A 50 minutes long written examination worth 20% that will be held in week 5 during practical class. This will test your understanding of material covered in weeks 1 to 4.

On successful completion you will be able to:
- Explain the concepts and principles on which modern cryptography relies upon.
- Employ adapted cryptographic tools and techniques to encrypt, decrypt and sign messages.
- Decipher simple encrypted messages using a range of cryptanalysis methods.

Assignment 1
Assessment Type: Project
Indicative Time on Task: 7 hours
Due: Week 7
Weighting: 15%

This assignment deals with symmetric-key cryptography and is due on week 7. The assignment is to be submitted via iLearn.

On successful completion you will be able to:
- Explain the concepts and principles on which modern cryptography relies upon.
- Employ adapted cryptographic tools and techniques to encrypt, decrypt and sign messages.
- Decipher simple encrypted messages using a range of cryptanalysis methods.

Module Exam #2
Assessment Type: Examination
Indicative Time on Task: 10 hours
Due: Week 9
Weighting: 20%

A 50 minutes long written examination worth 20% that will be held in week 9 during practical class. This will test your understanding of material covered in weeks 5 to 8.
On successful completion you will be able to:

• Explain the concepts and principles on which modern cryptography relies upon.

• Apply cryptographic technologies and protocols to increase data security and protect privacy.

Assignment 2
Assessment Type 1: Project
Indicative Time on Task 2: 8 hours
Due: Week 12
Weighting: 15%

This assignment deals with public-key cryptography and is due on week 12. The assignment is to be submitted via iLearn.

On successful completion you will be able to:

• Apply cryptographic technologies and protocols to increase data security and protect privacy.

Module Exam #3
Assessment Type 1: Examination
Indicative Time on Task 2: 10 hours
Due: Week 13
Weighting: 20%

A 50 minutes long written examination worth 20% that will be held in week 13 during practical class. This will test your understanding of material covered in weeks 9 to 12.

On successful completion you will be able to:

• Explain the concepts and principles on which modern cryptography relies upon.

• Apply cryptographic technologies and protocols to increase data security and protect privacy.

1 If you need help with your assignment, please contact:

• the academic teaching staff in your unit for guidance in understanding or completing this type of assessment

• the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation.
Delivery and Resources

Computing Facilities

Important! Please note that this is a BYOD (Bring Your Own Device) unit. You will be expected to bring your own laptop computer (Windows, Mac or Linux) to the workshop, install and configure the required software, and incorporate secure practices into your daily work (and play!) routines.

Classes

Each week you should complete any assigned readings and review the lecture slides in order to prepare for the lecture. There are three hours of lectures and a one-hour workshop every week. There uses hands-on exercises to reinforce concepts introduced during the lectures; you should have chosen a practical on enrollment. You will find it helpful to read the workshop instructions before attending - that way, you can get to work quickly!

For details of days, times and rooms consult the timetables webpage.

Note that **Workshops commence in week 1.**

You should have selected a practical at enrollment.

Please note that you will be **required** to submit work every week. Failure to do so may result in you failing the unit or being excluded from the exam.

Discussion Boards

This unit makes use of discussion boards hosted within iLearn. Please post questions there; they are monitored by the staff on the unit.

Required and Recommended Texts and/or Materials

Required readings for this unit:

Recommended readings for this unit:

aphy (HAC), CRC Press, Boca Raton, FL, 1996. All required chapters are available online at http://cacr.uwaterloo.ca/hac/

- NIST SP 800 documents available from http://csrc.nist.gov/publications/PubsSPs.html
- IETF RFC’s available from http://www.rfc-editor.org
- Cryptography Engineering: Design Principles and Practical Applications, Ferguson, Neils, Tadayoshi Kohno and Bruce Schneier, 1st ed., Wiley

TECHNOLOGY USED AND REQUIRED

iLearn

iLearn is a Learning Management System that gives you access to lecture slides, lecture recordings, forums, assessment tasks, instructions for practicals, discussion forums and other resources.

Echo 360 (formerly known as iLecture)

Digital recordings of lectures are available. Read these instructions for details.

Technology Used

Java or C++ programming language and GP/PARI, GnuPG, VeraCrypt, Thunderbird, Gnu Privacy Guard, Enigmail, OpenSSH, PuTTY, Ophcrack.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Cryptography and Elementary Number Theory</td>
</tr>
<tr>
<td>2</td>
<td>Symmetric Cryptography</td>
</tr>
<tr>
<td>3</td>
<td>Hashes, Digests and Passwords</td>
</tr>
<tr>
<td>4</td>
<td>Encrypting Files and Filesystems</td>
</tr>
<tr>
<td>5</td>
<td>Introduction to Public Key Cryptography and Advanced Number Theory</td>
</tr>
<tr>
<td>6</td>
<td>Digital Signatures and Authentication Protocols</td>
</tr>
<tr>
<td>7</td>
<td>Network and Telecommunications Security</td>
</tr>
<tr>
<td>8</td>
<td>ElGamal Cryptosystem and Elliptic Curve Cryptography</td>
</tr>
<tr>
<td>9</td>
<td>Blockchain and Cryptocurrencies I</td>
</tr>
<tr>
<td>10</td>
<td>Blockchain and Cryptocurrencies II</td>
</tr>
<tr>
<td>11</td>
<td>Quantum Computing and Post-Quantum Cryptography</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Topics in Cryptography</td>
</tr>
<tr>
<td>13</td>
<td>Revision and Exam Preparation</td>
</tr>
</tbody>
</table>
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/
The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues

Student Enquiries

Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Grading Standards

At the end of the semester, you will receive a grade that reflects your achievement in the unit

- Fail (F): does not provide evidence of attainment of all learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; and incomplete, confusing or lacking
communication of ideas in ways that give little attention to the conventions of the discipline.

- **Pass (P):** provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; and communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.
- **Credit (Cr):** provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; plus communication of ideas fluently and clearly in terms of the conventions of the discipline.
- **Distinction (D):** provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.
- **High Distinction (HD):** provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application.

Your final grade depends on your performance in each assessment task and on your ability to perform well enough on the hurdle assessment tasks.

For each task, you receive a mark that reflects your standard of performance. Then the different component marks are added up to determine an aggregated mark out of 100. In order to pass the unit, this aggregated mark needs to be at least 50.

You also need to be achieve a minimum standard of performance on the hurdle assessment tasks.

Hurdle Assessment Task

- Submission of tutorial tasks in this unit is a hurdle requirement. You are required to make at least 6 out of 10 submissions in order to pass the unit.

Note that assignment submission in this unit is not a hurdle requirement. However, if you do not make a reasonable attempt at the two assignments, you will be unlikely to pass the unit.

Your final grade is then a direct reflection of the aggregated mark (provided that you satisfy the
hurdle requirements) according to the following:

- 85-100 for HD
- 75-84 for D
- 65-74 for CR
- 50-64 for P

If you receive special consideration for the final exam, a supplementary exam will be scheduled in the interval between the regular exam period and the start of the next session. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. You can check the supplementary exam information page on FSE101 in iLearn (bit.ly/FSESupp) for dates, and approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

If you are given a second opportunity to sit the final examination as a result of failing to meet the minimum mark required, you will be offered that chance during the same supplementary examination period and will be notified of the exact day and time after the publication of final results for the unit.