ASTR7913
Contemporary Research Techniques in Astrophysics
Session 2, In person-scheduled-weekday, North Ryde 2023
School of Mathematical and Physical Sciences

Contents

General Information .. 2
Learning Outcomes .. 3
General Assessment Information 3
Assessment Tasks .. 4
Delivery and Resources ... 7
Unit Schedule ... 7
Policies and Procedures ... 7
Changes from Previous Offering 9
Changes since First Published .. 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

https://unitguides.mq.edu.au/unit_offerings/155959/unit_guide/print
General Information

Unit convenor and teaching staff
Convenor and project advisor
Matt Owers
matt.owers@mq.edu.au
12 Wally's Walk, rm 510
By email appointment.

Project Advisor
Joanne Dawson
joanne.dawson@mq.edu.au
12 Wally's Walk, rm 514
By email appointment.

Project Advisor
Devika Kotachery
devika.kamath@mq.edu.au
12 Wally's Walk, rm 522
By email appointment.

Project Advisor
Gayandhi De Silva
gayandhi.desilva@mq.edu.au
12 Wally's Walk, rm 538
By email appointment.

Credit points

10

Prerequisites

Admission to MRes

Corequisites

Co-badged status

https://unitguides.mq.edu.au/unit_offerings/155959/unit_guide/print 2
Unit description
This unit will introduce students to fundamental analysis techniques used in contemporary astrophysics. Students will undertake a series of projects in which they will reproduce key recent results from research papers. The projects will span a range of potential topics from radio astronomy, instrumentation, high resolution optical spectroscopy of stars, spatially resolved spectroscopy of galaxies, quantitative structure of galaxies, analysis of large survey data, and computational theory. After completion of this unit, students will possess the skills required to undertake a range of advanced research projects.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

ULO1: demonstrate the skills required to undertake research across a broad range of topics in astrophysics.
ULO2: apply advanced knowledge of fundamental analysis techniques used in astronomy research.
ULO3: critically evaluate scientific outcomes in light of applied analysis techniques.
ULO4: effectively communicate the results of astronomical research in written and oral form.
ULO5: independently solve complex computational and technical problems related to astronomy research projects.

General Assessment Information

Unit Workload
For each of the four projects, students will be required to submit a written report that describes the research problem addressed, the techniques used, as well as the outcomes and conclusions. Each report should be submitted by the due date and time. Students will also be undergo an oral assessment for each project. Please note that the time listed against each assessment task is the estimated time required to complete the task in addition to the time spent on the project itself.

Requirements to Pass this Unit
To pass this unit you must achieve a total mark equal to or greater than 50%.

Late Assessment Submission Penalty
Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>25%</td>
<td>No</td>
<td>Week 5</td>
</tr>
<tr>
<td>Project 2</td>
<td>25%</td>
<td>No</td>
<td>Mid-semester break</td>
</tr>
<tr>
<td>Project 3</td>
<td>25%</td>
<td>No</td>
<td>Week 11</td>
</tr>
<tr>
<td>Project 4</td>
<td>25%</td>
<td>No</td>
<td>Week 13</td>
</tr>
</tbody>
</table>

Project 1

Assessment Type 1: Project
Indicative Time on Task 2: 12.5 hours
Due: Week 5
Weighting: 25%

A report containing a written and oral component on the first of four projects undertaken during the unit.

On successful completion you will be able to:
• demonstrate the skills required to undertake research across a broad range of topics in astrophysics.
• apply advanced knowledge of fundamental analysis techniques used in astronomy research.
• critically evaluate scientific outcomes in light of applied analysis techniques.
• effectively communicate the results of astronomical research in written and oral form.
• independently solve complex computational and technical problems related to astronomy research projects.

Project 2
Assessment Type 1: Project
Indicative Time on Task 2: 12.5 hours
Due: Mid-semester break
Weighting: 25%

A report containing a written and oral component on the second of four projects undertaken during the unit.

On successful completion you will be able to:
• demonstrate the skills required to undertake research across a broad range of topics in astrophysics.
• apply advanced knowledge of fundamental analysis techniques used in astronomy research.
• critically evaluate scientific outcomes in light of applied analysis techniques.
• effectively communicate the results of astronomical research in written and oral form.
• independently solve complex computational and technical problems related to astronomy research projects.

Project 3
Assessment Type 1: Project
Indicative Time on Task 2: 12.5 hours
Due: Week 11
Weighting: 25%

A report containing a written and oral component of the third of four projects undertaken during the unit.
On successful completion you will be able to:

- demonstrate the skills required to undertake research across a broad range of topics in astrophysics.
- apply advanced knowledge of fundamental analysis techniques used in astronomy research.
- critically evaluate scientific outcomes in light of applied analysis techniques.
- effectively communicate the results of astronomical research in written and oral form.
- independently solve complex computational and technical problems related to astronomy research projects.

Project 4

Assessment Type 1: Project
Indicative Time on Task 2: 12.5 hours
Due: Week 13
Weighting: 25%

A report containing a written and oral component on the fourth of four projects undertaken during the unit.

On successful completion you will be able to:

- demonstrate the skills required to undertake research across a broad range of topics in astrophysics.
- apply advanced knowledge of fundamental analysis techniques used in astronomy research.
- critically evaluate scientific outcomes in light of applied analysis techniques.
- effectively communicate the results of astronomical research in written and oral form.
- independently solve complex computational and technical problems related to astronomy research projects.

1 If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.
Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation.

Delivery and Resources

Students will undertake four guided projects over the course of the semester, each coupled with an academic advisor. Students will be expected to spend **one full day per week** on their projects, and will consult with the academic advisor in the weekly 2-hour workshops for help with problem solving. The first workshop in Week 1 will involve an introduction to the unit. The four projects will be computational in nature, so students will require access to either a laptop or desktop computer. There is no required text, and appropriate reading material will be made available by the academic advisors.

COVID Information

For the latest information on the University’s response to COVID-19, please refer to the Coronavirus infection page on the Macquarie website: https://www.mq.edu.au/about/coronavirus-faqs. Remember to check this page regularly in case the information and requirements change during semester. If there are any changes to this unit in relation to COVID, these will be communicated via iLearn.

Unit Schedule

Students will complete 4 mini-projects throughout the semester (N.B. the below ordering and titles of the projects may change -- see iLearn for the latest):

1. **Week 1**: Unit overview and introduction to the projects (2hr workshop)
2. **Weeks 2-4, Project 1**: Resolving the sources of gas ionisation in galaxies using optical spectroscopy. (Mentor: Matt)
3. **Weeks 5-7, Project 2**: Exploring Stellar and Circumstellar Chemistry and Dynamics with High-Resolution Spectroscopy. (Mentor: Devika)
4. **Weeks 8-10, Project 3**: Kinematics of HII regions using radio interferometry. (Mentor: Jo)
5. **Week 11-13, Project 4**: Discovering Galactic substructure with Large spectroscopic survey data (Mentor: Gayandhi)

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
Students seeking more policy resources can visit Student Policies. It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module
The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support
Macquarie University offers a range of Student Support Services including:

- IT Support
- Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues
- Student Advocacy provides independent advice on MQ policies, procedures, and processes

Student Enquiries
Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering
We have added two brand new projects to the unit thanks to Devika Kamath and Gayandhi De Silva. Gayandhi is new to the unit and replaces Orsola De Marco.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/07/2023</td>
<td>Updated project title in the Unit Schedule.</td>
</tr>
</tbody>
</table>

Unit guide ASTR7913 Contemporary Research Techniques in Astrophysics