

PHYS1510

Engineering Physics

Session 3, In person-scheduled-weekday, North Ryde 2022

School of Mathematical and Physical Sciences

Contents

General Information	2
Learning Outcomes	2
General Assessment Information	3
Assessment Tasks	8
Delivery and Resources	12
Unit Schedule	14
Policies and Procedures	15
Contact Hours	19
Laboratory Requirements and Work	19
Learning and Teaching Activities	21
Unit Specific Texts and Materials	22

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff

Program Manager

Can Yalcinkaya

can.yalcinkaya@mq.edu.au

Contact via By email

Macquarie University College

Contact staff member

Credit points

10

Prerequisites

(HSC Advanced Mathematics Band 4 and above or Extension 1 Band E2 and above or Extension 2) or MATH1000 or MATH130 or WFMA003 or WFMA0003

Corequisites

Co-badged status

Unit description

The design and development of new technologies is governed and constrained by the fundamental laws of nature, as described by the principles and practice of physics. The topics studied in this unit are illustrated with everyday examples to provide an overview of physics for students studying engineering disciplines. Laboratory sessions enable physics concepts to be explored in a practical way, and build skills in experimentation, measurement, data collection and analysis.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: explain foundational physics concepts in terms of their underlying physical principles and describe them in terms of concise mathematical models.

ULO2: analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical

results relate to the physical world.

ULO3: perform physical measurements, record experimental data, display data graphically, analyse data, and draw written conclusions in a clear, concise, and systematic manner.

ULO4: identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.

ULO5: demonstrate foundational learning skills including active engagement in your learning process.

ULO6: work collaboratively with peers.

General Assessment Information

Requirements to Pass

To successfully complete this unit, a student must obtain a numerical overall mark of 50 or more for the unit.

For further details about grading, please refer to Part F of the Assessment Procedure.

Students must also pass any hurdle assessments as stipulated in the Assessment Section of this Unit Guide.

Grading

Students will be awarded common result grades as specified in the Assessment Policy.

Students will receive criteria and standards for specific assessment tasks, which will be aligned with the grading descriptors given in Part F of the Assessment Procedure.

Note – Other grades, such as I, IS, UD, UJ may be allocated and these grades are outlined in Appendix A of the Assessment Policy.

Where to find information about assessments

General assessment information, such as the number and nature of assessments, due dates and weightings, has been provided in this unit guide.

Specific assessment information including assignment instructions, questions, marking criteria and rubrics as well as examples of relevant and related assessment tasks and responses will be available in the Assessment section on iLearn.

Submission of Assessment Tasks

Assessments must be submitted in accordance with instructions provided in this Unit Guide and via iLearn. Any tasks that are not submitted as per the assessment instructions may be considered a non-submission and a zero mark may be awarded for the task.

Late Submissions and Penalties (applicable to non-time limited assessment tasks)

Late submissions are allowed but they will attract a late submission penalty unless the student has an approved special consideration application (see the Special Consideration Policy).

Late penalties are calculated based on the marks allocated to the specific assessment task. The penalty for late submission is as follows:

- 5% of the total possible marks will be deducted if it is late by up to 30 minutes
- 10% of the total possible marks will be deducted if it is more than 30 minutes late and up to 24 hours late
- A further 10% of the total possible marks will be deducted for each 24-hour period up to 3 days (including weekends)
- 100% of the marks will be deducted after 3 days and zero marks will be awarded

Please note that online submissions are time stamped and this is used to determine late penalties which means that submitting an assessment even a few seconds after the deadline results in a late submission penalty as noted above. There is no flexibility regarding the application of the late submission penalties. It is students' responsibility to allow sufficient time for submission of their work and uploading any documents.

Examples:

If the assessment task is due on a Friday at 5.00pm

Submission day/time	Deduction penalty
Before/at 5pm Friday	0%
After 5pm to 5.30pm Friday	5%
After 5.30pm Fri to 5.00pm Saturday	10%
After 5.00pm Sat to 5.00pm Sunday	20%
After 5.00pm Sun to 5.00pm Monday	30%
After 5.00pm Monday	100%

If the assessment task is due on a Wednesday at 11.55pm

Submission day/time	Deduction penalty
Before/at 11.55pm Wednesday	0%
After 11.55pm to 12.25 am Thursday	5%
After 12.25am Thurs to 11.55pm Thursday	10%
After 11.55pm Thurs to 11.55pm Friday	20%

Unit guide PHYS1510 Engineering Physics

After 11.55pm Fri to 11.55pm Saturday	30%
After 11.55pm Saturday	100%

Please see "In-class assessments" section for further information on assessments that take place during class time.

The above late submission penalties do not apply to time-limited assessment tasks. A time-limited assessment task must be submitted by its deadline. Any time-limited task that is not submitted as required will be considered a non-submission and a zero mark will be awarded for the task.

Extensions (applicable to non-time limited assessment tasks)

Extensions are allowed only if the student is granted a special consideration. To apply for an extension, students must submit their application via ask.mq.edu.au.

An **approved** extension will not incur late penalties. However, where a student has been granted an extension and then submits late, i.e., after the stipulated new due date following extension, late penalties will be applied.

Resubmissions (applicable to non-time limited assessment tasks)

It is students' responsibility to upload their assessments as per the instructions provided on iLearn. Following an initial submission, students may resubmit their work up to 3 days after the due date* if, for example, they have submitted the incorrect document or forgotten to include information.

*If you make a resubmission after the due date, your submission will be counted as late, and penalties will be applied.

Retention of Originals

It is students' responsibility to retain a copy of any work submitted. Students may be required to produce these documents upon request.

Requests for original documentation will be sent to the student's Macquarie University email address. Students must retain all original documentation for a six (6) month period and must supply original documents to the University within ten (10) working days of such a request being made.

In-Class Assessments (time-limited assessments)

Assessments could be administered during scheduled lessons and students may be asked to produce their Macquarie University Student ID Card or any other official photo ID if required. Students may not be allowed sit an in-class assessment task if they cannot produce a valid photo ID.

Students are expected to be in class for the whole duration of their scheduled lesson to take the assessment task. No additional time or adjustment will be made for late arriving students or students not ready to submit an assessment at the start of the lesson. Any time-limited task that

is not submitted as per assessment instructions will be considered a non-submission and a zero mark will be awarded for the task.

For example, if a one-hour test or quiz is due to take place in a 2-hour lesson, the test or quiz may start at any time in the first hour or at the start of the second hour, so students must be ready to take the test at the beginning of the lesson. No additional time will be given, or adjustment made for students who arrive late. While they may still be permitted to take the assessment, depending on the task, the student will only have the remaining time to complete the task.

Final Examinations

The final examinations will be held during the Macquarie University Final Examination period. Students must be available to sit final exams or submit assessments throughout this period.

Final Examination Timetable

The University will publish the <u>Final Examination Timetable</u> before the commencement of the final examination period.

Final Examination Requirements

Details of the structure and format of the final examination will be made available to students via iLearn prior to the start of the final examination period.

For additional information regarding examination requirements refer to the Assessment Policy, Assessment Procedures, Section 3, Part E - Examinations.

Missed assessments and examinations

For any missed assessment tasks, please refer to the Special Consideration Policy.

Supplementary Tests and Examinations

When a student is granted a supplementary test or examination, they will be advised of the time, date and location for the supplementary task.

Supplementary interim assessments, i.e., assessments held during the session, will be held throughout the Session and students who are to sit a supplementary exam will be informed of times and dates via ask.mq.edu.au.

Supplementary final examination period for formal, end-of-term examinations will be the fortnight following Week 7. Students who need to sit a supplementary final examination are required to be available to undertake examinations during the supplementary examination period.

No more than one (1) supplementary assessment will be offered to a student in each affected unit, so it is essential that students make themselves available for alternative assessment activities. Please refer to the Special Consideration Policy for further details.

Results for supplementary final examinations may not be available for up to two weeks following the supplementary examination.

Due to the timing and administration of the supplementary final exams, students in their final

Session of study should note that formal completion of their studies may not be possible until supplementary results are released. Similarly, students who are enrolled in a unit which is a prerequisite to another unit should note that they may not be able to enrol in subsequent unit/courses/program of study on time.

Hurdle Assessments

A hurdle assessment mandates a minimum level of academic performance as a condition of successful completion of a unit. A student who has obtained a numerical mark of at least 50 yet failed all available attempts of a hurdle, fails the unit and receives a FH grade.

Accessing your Results

Students will be able to view their results for interim assessments via the Grades section in <u>iLear</u> n.

Marks for all assessment tasks will be released to students once marking and all relevant checks are concluded.

Students will be able to view their overall result of a unit via eStudent when results are ratified.

Calculating your WAM

Weighted Average Mark (WAM) will be the average of the actual marks students achieved in all units of their program/course and is a mark out of 100. WAM also incorporates ALL marks, including those from a fail grade. For more information, please refer to the Understanding your W AM page.

Obtaining Feedback

Feedback is an important part of student development and opportunities for feedback are built into the curriculum at key points throughout the Session. Students who complete the homework and classwork assigned to them will receive constructive feedback from teaching staff about their academic progress and performance in assessment tasks or a unit of study. When relevant, other staff such as Senior Teachers, Program Managers and members of the Student Administration and Services Team will provide feedback and advice to students about their academic performance in a course/program of study. Feedback may be provided to individual students, a group of students or a whole class and it may be written or verbal in nature.

Some examples of feedback include:

- A teaching staff member reviewing a draft submission and giving a student advice on how to improve their work before making a final submission
- A teaching staff member telling a class that they need to improve their editing of grammar in their recently submitted assignment
- A teaching staff member discussing progress of an individual student before census date to allow the student to decide whether they should remain enrolled in the unit
- Online feedback via announcements or forums, an online marking rubric or various iLearn activities employed in a unit. Please note that feedback on written assessments is

usually provided via Feedback Studio in iLearn

- · Written marks and comments on a marking sheet or essay
- Recorded voice comment in iLearn provided in response to an essay submitted online
- A student receiving advice that they should consider withdrawing from a unit because they have missed too many classes / too much work to be able to catch up or for other reasons

It is a student's responsibility to:

- attend sessions, be present and actively engaged during times when feedback is provided in scheduled class times
- organise an alternative time with the teacher so that they can receive their feedback if absent from an in-class feedback session due to unavoidable circumstances
- ensure that they have received sufficient feedback prior to their next assessment task and/or final assessment in the unit
- act promptly on feedback provided, e.g., incorporate advice provided into their work and study habits)

Students who are unsure how or when feedback was or will be provided, or feel that feedback provided is not sufficient, should approach relevant teaching or administrative staff and request additional feedback in a timely manner during the Session and prior to any subsequent assessment task or the final assessment task. Claims that not enough feedback was provided are not grounds for a grade appeal, especially when a student did not make any effort to approach staff about obtaining additional feedback in a timely manner. Students may seek general feedback about performance in a unit up to 6 months following results release.

If a student has any problems contacting their teacher, they should seek help from a member of the Student Administration and Services team.

Contacting Teaching Staff to Obtain Help

For all University-related correspondence, students must use their official Macquarie University student email account. Students may contact teaching staff at any time during the Session by using the teacher contact details provided in this Guide. Students should expect a response within 1-2 business days.

Assessment Tasks

Name	Weighting	Hurdle	Due
Problem Sets	10%	No	Ongoing
Tests	15%	No	Lesson 7 Weeks 2, 4 and 6
Mid-Term Exam	25%	No	Lesson 1, Week 5

Name	Weighting	Hurdle	Due
Laboratory Work	20%	Yes	Ongoing
Final Exam	30%	No	Final Examination Period

Problem Sets

Assessment Type 1: Problem set Indicative Time on Task 2: 10 hours

Due: **Ongoing** Weighting: **10%**

Students are required to complete a number of problem sets during the term. The problem sets will cover any of the topics studied until the date on which the problem sets are provided.

On successful completion you will be able to:

- explain foundational physics concepts in terms of their underlying physical principles and describe them in terms of concise mathematical models.
- analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical results relate to the physical world.
- identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.

Tests

Assessment Type 1: Quiz/Test Indicative Time on Task 2: 15 hours Due: Lesson 7 Weeks 2, 4 and 6

Weighting: 15%

Students are required to complete three tests during the term. The tests will cover any of the topics studied until the date on which the tests are sat.

On successful completion you will be able to:

· explain foundational physics concepts in terms of their underlying physical principles and

describe them in terms of concise mathematical models.

- analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical results relate to the physical world.
- identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.

Mid-Term Exam

Assessment Type 1: Examination Indicative Time on Task 2: 10 hours

Due: Lesson 1, Week 5

Weighting: 25%

The Mid-term exam may include any topic covered until the end of Week 4.

On successful completion you will be able to:

- explain foundational physics concepts in terms of their underlying physical principles and describe them in terms of concise mathematical models.
- analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical results relate to the physical world.
- identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.

Laboratory Work

Assessment Type 1: Lab book Indicative Time on Task 2: 5 hours

Due: **Ongoing** Weighting: **20%**

This is a hurdle assessment task (see <u>assessment policy</u> for more information on hurdle assessment tasks)

Students will be required to demonstrate some of the basic skills and techniques that are used in experimental physical science and engineering. They will need to record all laboratory work in a laboratory notebook and submit their lab books to the teacher at the specified time.

On successful completion you will be able to:

- explain foundational physics concepts in terms of their underlying physical principles and describe them in terms of concise mathematical models.
- analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical results relate to the physical world.
- perform physical measurements, record experimental data, display data graphically, analyse data, and draw written conclusions in a clear, concise, and systematic manner.
- identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.
- demonstrate foundational learning skills including active engagement in your learning process.
- · work collaboratively with peers.

Final Exam

Assessment Type 1: Examination Indicative Time on Task 2: 14 hours Due: **Final Examination Period**

Weighting: 30%

The Final Exam may include any topic covered in this unit.

On successful completion you will be able to:

- explain foundational physics concepts in terms of their underlying physical principles and describe them in terms of concise mathematical models.
- analyse a real-world problem, break the problem into component parts relating to different areas of physics, identify known quantities and apply mathematical models to arrive at a numerical value for an unknown quantity, and interpret how the numerical results relate to the physical world.
- identify, record and explain sources of uncertainty in physical measurements; and undertake appropriate uncertainty analysis of results, including statistical analysis.

- ¹ If you need help with your assignment, please contact:
 - the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
 - · the Writing Centre for academic skills support.

Delivery and Resources

Session Dates & Calendar

Details of key dates during Session 3 can be found on the Key Dates calendar.

Enrolment and Timetables

General timetable information is available via Macquarie University's Timetable page.

Students will be able to enrol and register for classes via <u>eStudent</u> and view their personal timetable. It is the student's responsibility to ensure that classes they have registered for do not clash.

Students are only permitted to attend classes in which they have registered via eStudent.

The last day to enrol, add or change units is the Sunday, 9.00pm (AEST) before the start of the Session. Changing groups is not possible after the enrolment period has concluded.

Attendance Requirements – All Students

Attendance will be monitored in each lesson and students are able to see their current attendance percentage to date and potential attendance percentage for each unit they have enrolled in via iLearn.

- Current Attendance Percentage will reflect the percentage of classes a student has attended so far (based only on the lessons held to date).
- Potential Attendance Percentage will reflect the percentage of classes a student can
 potentially attend by the end of the Session, taking into consideration lessons attended
 and assuming the student also attends all future lessons scheduled (based only on the
 total number of lessons in the Session).

When a student is present for a part of a lesson (for example arrives late, leaves early, leaves the class frequently, particularly for lengthy periods), the teacher reserves the right to mark a student absent for that part of the lesson.

Public Holidays and Make-up Lessons

If any scheduled class falls on a public holiday, a make-up lesson may be scheduled. Please che ck the iLearn announcements and your emails for details of the make-up lessons.

In Session 3, there will be a recess starting from 24 December (Christmas Eve) up to and

² Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

including 2 January (New Year's Day Additional Day Public Holiday), there will be no classes during this period and the University will be closed. Classes will resume on Tuesday, 3 January 2023.

Technology Used and Required

- · Access to internet
- AppStream is a fully managed application streaming service that provides MQ users both staff and students with instant access to their applications from anywhere enabling students to use Microsoft Windows applications they require to do their university work from anywhere, anytime, on any device (BYODs).
- · Access to iLearn.
- Access to Macquarie University Library catalogue (MultiSearch); and
- Macquarie students can download Microsoft Office Suite software from MS Office portal.
 For instructions, please visit IT Service Desk Microsoft.

Using your Own Device

Macquarie University students are entitled to free access to the Microsoft Office Suite, which can be accessed here. For any problems related to this link and Microsoft Office Suite please contact OneHelp.

Students are required to use Windows or Mac devices to study. They will need to have access to Office applications (Word, Excel and PowerPoint) and Internet browsers.

iLearn

<u>iLearn</u> is Macquarie's online learning management system and a principal teaching and learning resource which will be used throughout the Session.

For any resource related iLearn questions contact your teacher. For any technical or support issues using iLearn, please contact the IT helpdesk (Ph. 02 9850 4357) or lodge a ticket using one help.

Useful Study Resources

<u>StudyWise</u> is an iLearn resource created by the Academic Literacies Unit. This resource is specifically designed to help you to manage your studies, strengthen your study techniques, write effective assignments and improve your English language proficiency. Once you enrol in StudyWise, you can access it from your iLearn course list under the category "Student Support".

<u>Lib Guides</u> provide students with links to electronic sources and websites that are good starting points for research in different fields or disciplines.

MultiSearch will connect you to Macquarie University Library and allow you to search library resources, databases, unit readings and past exam papers.

Macquarie University Library has released a mobile device app called libMQ. The app allows students to easily access MyLibrary (be notified about loans, renewals, holds and fees owing),

book a computer, Library floor maps, see new books lists and search MultiSearch.

It can be downloaded from either Google Play or the App store.

Assignment and Study Support provide information about:

- Researching for your assignments
- How to manage your references
- Referencing style guides
- Subject and research guides

Numeracy Support is provided by the <u>Numeracy Centre</u>. Students can attend these support classes on a drop-in basis as required.

Studiosity is a one-to-one personal study support service which may be made available via iLearn. If available, students may use this service to get online study help and/or feedback on an assignment usually within 24 hours. Students who are unsure whether this service is available in their unit or how to use this service should check with their teacher. Please note that this is an external service and feedback provided is generic in nature (for example comments on grammar and cohesion) and may not be specific to the requirements of the task. If students require specific feedback on how their work aligns with the expectations of the unit or marking criteria, they should consult their teacher.

Unit Schedule

Weeks	Unit Material	Readings/ Assessments/ Tests	Laboratory/Activity Schedule
1	Introduction to PHYS1510 Measurement, motion along a straight line, and acceleration. Scalar and vector quantities, scalar product, vector product, and motion in 2 and 3		There will be a recess starting from 24 December (Christmas Eve) up to and including 2 January (New Year's Day Additional Day Public Holiday), there will be no classes during this period and the College will be closed. Classes will resume on Tuesday, 3 January 2023. Please note that the labs are compulsory to attend including the introductory lab session and the labs are ongoing.
2	Introduction to Mechanics Forces, Newton's laws, and friction.	Submit PDF of Problem Set 1 online on Tuesday Week 2, 11.55 pm. Test 1 (Lesson 7 Week 2)	

3	Energy, work, linear momentum, impulse, collisions, and introduction to rotational motion	Submit PDF of Problem Set 2 online on Tuesday Week 3, 11.55 pm.	
4	Rotational motion, simple harmonic motion, waves, and wave interference	Submit PDF of Problem Set 3 online on Thursday Week 4, 11.55 pm. Test 2 (Lesson 7 Week 4)	
5	Thermodynamics and Electrostatics	Mid-Term Exam (Lesson 1 Week 5)	
6	Magnetism	Test 3 (Lesson 7 Week 6) Submit PDF of Problem Set 4 online on Thursday Week 6, 11.55 pm.	
7	Final Exam Period		Final Exam

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- · Fitness to Practice Procedure
- · Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit <u>Student Policies</u> (<u>https://students.mq.edu.au/support/study/policies</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.e

du.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe <u>academic integrity</u> – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free <u>online writing and maths support</u>, academic skills development and wellbeing consultations.

Academic Integrity

Using the work or ideas of another person, whether intentionally or not, and presenting them as your own without clear acknowledgement of the source is called Plagiarism.

Macquarie University promotes awareness of information ethics through its <u>Academic Integrity P</u> olicy. This means that:

- all academic work claimed as original must be the work of the person making the claim;
- all academic collaborations of any kind must be acknowledged;
- · academic work must not be falsified in any way; and
- when the ideas of others are used, these ideas must be acknowledged appropriately.

All breaches of the <u>Academic Integrity Policy</u> are serious and penalties apply. Students should be aware that they may fail an assessment task, a unit or even be excluded from the University for breaching the Academic Integrity Policy.

Penalties for Plagiarism and Collusion

The University may commence applicable disciplinary procedures if a person breaches the Academic Integrity Policy.

If students' work is found to be similar to another source and considered to include instances of plagiarism or collusion, they will be penalised.

Plagiarism occurs when a person takes someone else's work or ideas and presents them as their own, that is, without acknowledging where the work or ideas came from originally.

For example, if a student was awarded 52/100 marks for an essay, which contained 30%

similarity (i.e. 30% of the work was identified to be copied from another source), the 30% of the 100 marks allocated to the task (i.e. 30 marks) could be deducted as a penalty. The final score would be 22/100 marks.

Penalty calculations may vary by unit.

Collusion takes place when a student copies work or ideas from another student with or without this student's consent to complete a task that is supposed to be done individually. Please note that **all students are penalised** in collusion cases, regardless of who produced the original work.

For example, if a friend asks another student for assistance and the student provides them with a copy of their work, both students will receive exactly the same penalty for the act of collusion.

Turnitin and other Plagiarism Detection Software

Student submissions for assessment tasks are subject to plagiarism detection software, for example, <u>Turnitin</u>, or similar software approved by the University. This software compares electronically submitted papers to a database of academic publications, internet sources and other student papers that have been submitted to the system to identify matching text. It then produces an Originality Report which identifies text taken from other sources and generates a similarity percentage.

Multiple submissions may be possible via Turnitin or other software <u>prior</u> to the final due date and time of an assessment task and originality reports may be made available to students to view and check their levels of similarity prior to making a final submission. Students are encouraged to use these reports to ensure that they do not breach the Academic Integrity Policy through high levels of similarity (plagiarism).

If you have not planned your submission time carefully and note high levels of similarity in your work after the due date, you can still resubmit your work (if it is not a time-limited assessment); however, a late penalty will apply. For instructions on how to resubmit your work, please see the "Resubmissions (applicable to non-time limited assessment tasks)" section in this Unit Guide.

Teaching staff will use the originality report to judge whether plagiarism has occurred and whether penalties should apply for breaches of the Academic Integrity Policy. Any similar text identified by Turnitin on iLearn will be considered carefully to see if it is indeed a breach of the Academic Integrity Policy.

There is no set percentage which indicates whether plagiarism has occurred; all identified matching text should be reconsidered carefully. If plagiarism has occurred or is suspected and resubmission is possible prior to the due date, students are advised to edit their work before making a final submission. Help may be sought from teaching staff and students may also access Assignment and Study Support provided by the library or the Writing Centre.

Please refer to these instructions on how to submit your assignment through Turnitin on iLearn and to access similarity reports and feedback provided by teaching staff.

Should you have questions about Turnitin on iLearn or experience issues submitting through the system, you must inform your teacher immediately. If the issue is technical in nature, you may also lodge a OneHelp Ticket; please refer to the IT help page.

Submission of Drafts through Turnitin.

In some instances, students may be required to submit drafts of written work via Turnitin in iLearn **prior to the due date of the assessment** task so that they can receive feedback prior to making a final submission. If the student does not make a final submission prior to the due date, their draft will be counted as the final submission or late penalties will be applied.

Assessment Policy

Students should familiarise themselves with their responsibilities under the Assessment Policy, and notably the Assessment Procedures, Section 3, Part E – Examinations.

Final Examination Script Viewings

A student may request to view their final examination script once results have been released but scripts remain the property of Macquarie University.

Students should view their final examination paper prior to submitting a grade appeal, if this is relevant to their case. The viewing will be conducted in a secure location under supervision.

To request a final examination script viewing, please submit an <u>AskMQ</u> enquiry and write 'Script Viewing – [Unit Code, e.g. XXXX1000]' in the subject heading.

Grade Appeals

A student who has been awarded a final grade for a unit has the right to appeal that grade as outlined in the <u>Assessment Policy</u>, <u>Assessment Procedures</u>, <u>Section 3</u>, <u>Part F</u>. Grade appeals apply to the final mark and the grade a student receives for a unit of study. They do not apply to results received for individual assessment tasks.

Grade appeals must be submitted via <u>ask.mq.edu.au</u> within 15 working days from the published result date for the relevant unit. Before submitting a Grade Appeal, please ensure that you read the <u>Assessment Policy</u> and note valid grounds for appeals.

Students are expected to seek feedback on individual assessment tasks prior to the award of a final grade. Students may request generic feedback from teaching staff on their overall performance in the unit, including in a final examination. This can be done at any time in the sixmonth period starting from the day on which the final grade of the relevant unit is published.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE

- · Upload an assignment to Studiosity
- · Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- · Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- · Social support including information about finances, tenancy and legal issues

Student Enquiries

Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Contact Hours

Weekly face-to-face contact for this unit will be 16 hours (96 hours per term).

There will be 7 lessons per week consisting of 5x2-hour lessons and 2x3-hour lab sessions.

Laboratory Requirements and Work

Laboratory Work

The laboratory component is considered an essential component of learning and so counts for an appreciable fraction of the final assessment (20%).

The laboratory work is designed to introduce students to some of the basic skills and techniques that are used in experimental physical sciences. Laboratory experiments are designed to be carried out independently of the textbook material - although some of the topics will be discussed in class; therefore, some of the activities in the laboratory may not relate directly to the textbook

material. This is because the laboratory activities are intended not only to illustrate physical concepts but also to introduce students to some techniques of measurement and laboratory skill work. In the laboratory, students will be aided by laboratory demonstrators and instructional material in the form of online Laboratory Notes and slides. All the information students need for each experiment is contained in the online material.

<u>Laboratory Attendance Requirements</u>

The first physics lab session will consist of an introduction to the laboratory work, and a work health and safety learning experience. It is compulsory for all students. No student will be allowed to start lab work until they have completed an introduction and work heath and safety lab session. Students also need to check computer access in the physics lab during this time.

Laboratory assessment is a hurdle assessment task. In order to pass this unit, students **must** attend and successfully complete **ALL** units of work and experiments.

Students must attend the laboratory session in which they are enrolled. The schedule of labs is posted in the lab and on the WPHY1510 iLearn unit page. **Students must attend their scheduled laboratory lessons on time. Students who arrive late will be denied entry to the lab.**

If students arrive late by more than 15 minutes, they will not be allowed to join into the lab activities. They will need to submit an application for Special Consideration and if successful, will need to attend the make up labs offered in weeks 5, 6 or 7. There will only be two make-up lab sessions.

If a student miss a laboratory class this student will need to submit an application for **Special Consideration** and **if successful, will need to attend the make up labs offered in week 6 or week 7 and submit the corresponding physics lab reports.** There will only be two make-up lab sessions.

Students are expected to attend all scheduled laboratory lessons.

Because the laboratory work is a hurdle assessment, if a student misses a scheduled lab work without a valid reason, then he or she will <u>not</u> be considered to have satisfactorily completed the laboratory component of the unit.

If students miss a laboratory session, they must lodge a Special Consideration request. They can start this process at ask.mq.edu.au. If the Special Consideration is granted, the students will need to attend the supplementary lab sessions available during weeks 5, 6 or 7; note that no more than two make-up labs will be offered each term.

Laboratory Assessment

Before each lab session students must complete a <u>pre-lab work</u> exercise. The pre-lab work is an essential part of students' laboratory assessment because it reviews some of the topics covered in experiments. Pre-lab work is due at the beginning of each lab session.

Students will receive instructions from teacher(s) during the term on how to construct, write up,

and submit their laboratory work.

Students must submit a laboratory report for each skill work and experiment in this unit. This report should show the students' collected data, the calculations and graphs resulting from the data, and (if applicable) data interpretation and conclusion. At the end of each section students must summarise the findings and answer any questions posed in the guiding notes.

At the completion of each laboratory lesson students must show their books to the laboratory supervisor who will check them and collect them for marking. The marker, i.e., the laboratory demonstrator(s) will be checking their books to see whether students have kept a satisfactory record of what they have done and what they have concluded. The marked notebooks will be available at the start of the next scheduled laboratory. Students must check their books for comments from the markers as this will help them to refine the laboratory technique and increase the laboratory mark. The notebook will be kept in the laboratory and must not be removed from the laboratory at any time which is also valid for any previously filled notebook.

To be deemed to have successfully completed an experiment, students **must** obtain a mark of **at least 40%** for each of the laboratory sessions in order to pass the unit.

For a lab activity completion to be considered **a serious attempt**, the student must get a mark between 30 and 39%. A student whose work falls into this category will be given a second attempt at this lab activity later in the Term.

Students who do not meet this hurdle requirement will not pass the unit. Students are responsible for ensuring that they complete experiments as required during their registered laboratory sessions.

All laboratory work must be recorded directly into a laboratory notebook. More detailed instructions and advice will be provided in iLearn.

For late submissions, please refer to late submissions section above.

Details of the laboratory assessment will be outlined in the laboratory introduction lesson.

Feedback on laboratory work will be provided in class.

Learning and Teaching Activities

Lessons

Lessons will include a mixture of activities. New content and topics will be presented during lessons, and students will be given problems, practice questions and other interactive activities to apply the knowledge and the skills gained in the lesson. Students will be required to take notes, complete set tasks and engage in discussions and individual and group activities.

In class, specific time may be dedicated to work on assessment tasks and students will be given guidance and feedback to complete these. Certain lessons may be dedicated to independent research and reading related to the unit whether in the classroom or a computer lab.

Active Participation

In the workplace, at university and in the surrounding community, a person's contributions are

important. Students will be required to not only attend but also actively participate in lessons.

Active participation entails:

- · active engagement in class activities;
- · contribution to class discussions by asking and answering questions;
- · coming to class prepared and having completed required pre-readings and activities;
- · completion of set class and homework activities;
- · collaboration with other students; and
- · adhering to Macquarie University's Student Code of Conduct.

Unit Specific Texts and Materials

The following texts have been recommended for this unit.

Required Textbook:

Halliday, Resnick, and Walker, 2014, Fundamentals of Physics, extended 10th edition (with Wiley Plus).

All students should ensure that they have access to the recommended text(s) from the start of the Term as failure to do so could jeopardise their academic progress in this unit.

Other editions or formats of the above resource(s) may be acceptable, but students must consult teaching staff prior to purchasing these.

Required Resources

A copy of the Laboratory Manual is available on iLearn.