ACST3007
Quantitative Asset and Liability Modelling 2
Session 2, In person-scheduled-weekday, North Ryde 2024
Department of Actuarial Studies and Business Analytics

Contents

General Information .. 2
Learning Outcomes .. 2
General Assessment Information 3
Assessment Tasks .. 3
Delivery and Resources 5
Policies and Procedures 5

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Unit convenor and teaching staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhuo Jin</td>
</tr>
<tr>
<td>zhuo.jin@mq.edu.au</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACST306 or ACST3006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corequisites</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Co-badged status</th>
</tr>
</thead>
</table>

Unit description

The topics covered in this unit include: an introduction to stochastic processes; martingales; an introduction to stochastic calculus; Itô's lemma; forwards, futures, swaps and options; arbitrage-free pricing via replicating portfolio and risk neutral probability measures; the Girsanov theorem; the Black-Scholes option pricing model for European options; the 'Greeks' and dynamic hedging; term structure of interest rates; relations among short rates, forward rates and default-free zero-coupon bonds; interest rate models; firm-value and intensity-based credit risk models; ruin theory; valuation of basic guarantees. Students gaining a credit average in both ACST3006 and ACST3007 (minimum mark of 60 on both units) will satisfy the requirements for exemption from the professional subject CM2 of the Actuaries Institute.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: Understand the use of stochastic calculus in modelling security prices and valuation of option pricing approaches.

ULO2: Demonstrate an understanding of the Black-Scholes option pricing model via both the partial differential equation approach and the risk-neutral pricing approach.

ULO3: Describe the use of interest models in term of structure modelling and pricing of zero-coupon bonds.
ULO4: Describe the different approaches to modelling credit risk.
ULO5: Apply ruin theory to insurance problems.

General Assessment Information

Late Assessment Submission Penalty (written assessments)

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of ‘0’ will be awarded even if the assessment is submitted. Submission time for all written assessments is set at 11.55pm. A 1-hour grace period is provided to students who experience a technical concern.

For any late submissions of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, students need to submit an application for Special Consideration.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Exam</td>
<td>60%</td>
<td>No</td>
<td>Exam Period</td>
</tr>
<tr>
<td>Class Test</td>
<td>20%</td>
<td>No</td>
<td>Week 11</td>
</tr>
<tr>
<td>Assignment</td>
<td>20%</td>
<td>No</td>
<td>Week 8</td>
</tr>
</tbody>
</table>

Final Exam

Assessment Type: Examination
Indicative Time on Task: 28 hours
Due: Exam Period
Weighting: 60%

The final examination will be a three-hour written exam with ten minutes reading time, to be held during the University Examination period.

On successful completion you will be able to:
- Understand the use of stochastic calculus in modelling security prices and valuation of option pricing approaches.
- Demonstrate an understanding of the Black-Scholes option pricing model via both the partial differential equation approach and the risk-neutral pricing approach.
• Describe the use of interest models in term of structure modelling and pricing of zero-coupon bonds.
• Describe the different approaches to modelling credit risk.
• Apply ruin theory to insurance problems.

Class Test
Assessment Type 1: Quiz/Test
Indicative Time on Task 2: 12 hours
Due: Week 11
Weighting: 20%

The test will be approximately 90 minutes, to be held during class time.

On successful completion you will be able to:
• Understand the use of stochastic calculus in modelling security prices and valuation of option pricing approaches.
• Demonstrate an understanding of the Black-Scholes option pricing model via both the partial differential equation approach and the risk-neutral pricing approach.
• Describe the use of interest models in term of structure modelling and pricing of zero-coupon bonds.

Assignment
Assessment Type 1: Quantitative analysis task
Indicative Time on Task 2: 20 hours
Due: Week 8
Weighting: 20%

This is an individual assignment which focuses on problem solving using Excel spreadsheet.

On successful completion you will be able to:
• Understand the use of stochastic calculus in modelling security prices and valuation of option pricing approaches.
• Demonstrate an understanding of the Black-Scholes option pricing model via both the partial differential equation approach and the risk-neutral pricing approach.
• Describe the use of interest models in term of structure modelling and pricing of zero-coupon bonds.
coupon bonds.

1 If you need help with your assignment, please contact:
 - the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
 - the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources
Notes and tutorial materials will be provided in iLearn,

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Student Code of Conduct
Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results
Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be
made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of **Student Support Services** including:

- IT Support
- Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues
- Student Advocacy, provides independent advice on MQ policies, procedures, and processes
Student Enquiries
Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Unit information based on version 2024.02 of the Handbook