MECH3001
Thermodynamics

Session 1, In person-scheduled-weekday, North Ryde 2024

School of Engineering

Contents

General Information 2
Learning Outcomes 2
General Assessment Information 3
Assessment Tasks 5
Delivery and Resources 9
Unit Schedule 9
Policies and Procedures 10
Engineers Australia Competency Mapping 12

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Unit convenor and teaching staff</th>
<th>Nazmul Huda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact via</td>
<td>+61 2 9850 2249</td>
</tr>
<tr>
<td>50 Waterloo Road, Room 131</td>
<td>Thursday 2.00 - 4.00</td>
</tr>
</tbody>
</table>

| Credit points | 10 |

| Prerequisites | (MECH2002 or MECH202 and (20cp at 2000 level or above)) or Admission to MEngMechEng |

| Corequisites | |

| Co-badged status | |

Unit description

This unit examines the principles of thermodynamics. The unit covers knowledge in energy, enthalpy, entropy, energy transfer, mass and energy balance, laws of thermodynamics, and the design principles of thermo-fluid systems. At the end of the unit, students are expected to demonstrate the ability to improve the design of real-world thermo-fluid systems and demonstrate a detailed understanding and the application of energy systems.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

- **ULO1**: Articulate and interpret the Laws of Thermodynamics and Energy systems including properties of substances, state and equilibrium
- **ULO2**: Apply the concept of energy, enthalpy, entropy, entropy balance, energy balance and energy transfer in analysing thermodynamic systems
- **ULO3**: Analyse mass and energy transfer in both closed and open systems in steady and unsteady states.
- **ULO4**: Examine gas power cycle, vapour and combined power cycle, refrigeration cycle
and air-conditioning cycle and apply knowledge of thermodynamics to improve and optimise the design of the existing cycle.

ULO5: Exhibit specific skills in teamwork and written communication skills through technical report writing and laboratory work.

General Assessment Information

Student Responsibilities

Be familiar with University policy and College procedures and act in accordance with those policies and procedures.

It is the responsibility of the student to retain a copy of any work submitted. Students must produce these documents upon request. Copies should be retained until the end of the grade appeal period each term.

The student is to perform the required due diligence for their assessment grade and rectify as soon as possible upon finding any errors.

Late Assessment Submission Penalty

Students enrolled in Session-based units with written assessments will have the following university standard late penalty applied. Please see https://students.mq.edu.au/study/assessments for more information.

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. Submission time for all written assessments is set at 11:55 pm. A 1-hour grace period is provided to students who experience a technical concern.

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, students need to submit an application for Special Consideration.

Practical Component

Attendance of practical classes is mandatory before submitting the lab report. Lab reports submitted without attending the practical session will get a grade of '0' even if the assessment is submitted by the due date. A special consideration request must be submitted and approved if any student is unable to attend a practical session to organize alternative arrangements.

Resubmission option
Resubmission of any assessment task is not allowed under any circumstances.

Notifications
Formal notification of assessment tasks, grading rubrics, and due dates will be posted on iLearn. Although all reasonable measures to ensure the information is accurate, The University reserves the right to make changes without notice. Each student is responsible for checking iLearn for changes and updates.

Report and Assignment Tasks
Assignment Problems will be posted on iLearn at least one week before their submission date. Assignment solutions will be posted within a week after the submission date. Submissions will not be accepted once the solution is posted.

Assignment submissions and plagiarism policies
All assignments and reports must be submitted electronically through iLearn (in pdf format). Submissions will undergo plagiarism checkers using the Turnitin software and any work deemed to have a 30% or higher similarity score may incur an academic penalty. For more details on the policies of academic penalties relating to academic honesty, please refer to the policies and procedures section below.

Submissions are expected to be typed set in a logical layout and sequence. Markers WILL NOT grade poorly organized or illegible scans or drafts. The expected workload includes the preparation of final copies and clear diagrams.

Grading and passing requirements for unit
For further details about grading, please refer below to the policies and procedures section.

In order to pass this unit, a student must obtain a mark of 50 or more for the unit (i.e. obtain a passing grade P/ CR/ D/ HD).

The unit will be graded according to the Macquarie University Grading policy. The following grades will be used according to the listed numerical range:

ASSESSMENT GRADES AND STATUS

<table>
<thead>
<tr>
<th>GRADE</th>
<th>RANGE</th>
<th>STATUS (‘Standard Grade’ in AMIS)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final Examinations

Final examinations will typically take place at the end of the semester. For further information, please refer to the Examination Timetable website on www.mq.edu.au

If you receive special consideration for the final exam, a supplementary exam will be scheduled by the faculty during a supplementary exam period, typically about 3 to 4 weeks after the normal exam period. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. Approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory report</td>
<td>18%</td>
<td>No</td>
<td>Week 6, Week 9, Week 12</td>
</tr>
<tr>
<td>In class midterm test during lecture</td>
<td>10%</td>
<td>No</td>
<td>Week 7</td>
</tr>
<tr>
<td>Name</td>
<td>Weighting</td>
<td>Hurdle</td>
<td>Due</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Weekly SGTA classes</td>
<td>6%</td>
<td>No</td>
<td>Week 2 to Week 13</td>
</tr>
<tr>
<td>Assignment based on problem solving</td>
<td>16%</td>
<td>No</td>
<td>Week 8 and Week 13</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
<td>No</td>
<td>During final examination period</td>
</tr>
</tbody>
</table>

Laboratory report

Assessment Type 1: Lab report
Indicative Time on Task 2: 10 hours
Due: **Week 6, Week 9, Week 12**
Weighting: 18%

Laboratory report based on the practical classes

On successful completion you will be able to:
• Exhibit specific skills in teamwork and written communication skills through technical report writing and laboratory work.

In class midterm test during lecture

Assessment Type 1: Quiz/Test
Indicative Time on Task 2: 10 hours
Due: **Week 7**
Weighting: 10%

Midterm in class examination

On successful completion you will be able to:
• Articulate and interpret the Laws of Thermodynamics and Energy systems including properties of substances, state and equilibrium
• Apply the concept of energy, enthalpy, entropy, entropy balance, energy balance and energy transfer in analysing thermodynamic systems
• Analyse mass and energy transfer in both closed and open systems in steady and
unsteady states.

- Examine gas power cycle, vapour and combined power cycle, refrigeration cycle and air-conditioning cycle and apply knowledge of thermodynamics to improve and optimise the design of the existing cycle.

Weekly SGTA classes

Assessment Type 1: Participatory task
Indicative Time on Task 2: 10 hours
Due: Week 2 to Week 13
Weighting: 6%

Development of knowledge and skills requires continual practice at authentic tasks. In weekly SGTA classes, you will undertake a range of activities and complete various worksheets.

On successful completion you will be able to:

- Articulate and interpret the Laws of Thermodynamics and Energy systems including properties of substances, state and equilibrium
- Apply the concept of energy, enthalpy, entropy, entropy balance, energy balance and energy transfer in analysing thermodynamic systems
- Analyse mass and energy transfer in both closed and open systems in steady and unsteady states.
- Examine gas power cycle, vapour and combined power cycle, refrigeration cycle and air-conditioning cycle and apply knowledge of thermodynamics to improve and optimise the design of the existing cycle.
- Exhibit specific skills in teamwork and written communication skills through technical report writing and laboratory work.

Assignment based on problem solving

Assessment Type 1: Problem set
Indicative Time on Task 2: 5 hours
Due: Week 8 and Week 13
Weighting: 16%

Assignment based on problem solving activities
On successful completion you will be able to:

- Articulate and interpret the Laws of Thermodynamics and Energy systems including properties of substances, state and equilibrium
- Apply the concept of energy, enthalpy, entropy, entropy balance, energy balance and energy transfer in analysing thermodynamic systems
- Analyse mass and energy transfer in both closed and open systems in steady and unsteady states.
- Examine gas power cycle, vapour and combined power cycle, refrigeration cycle and air-conditioning cycle and apply knowledge of thermodynamics to improve and optimise the design of the existing cycle.

Final Examination

Assessment Type 1: Examination
Indicative Time on Task 2: 30 hours
Due: During final examination period
Weighting: 50%

If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.
Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation.

Delivery and Resources

Primary Text: Thermodynamics: An Engineering Approach (9th Edition in SI Units) by Yunus A. Cengel and Michael A. Boles

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture Topics</th>
<th>Key Topics to be Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction and Basic Concepts</td>
<td>Thermodynamics and Energy, Dimension and Units, Different Applications and definitions related to Thermodynamics, Processes and Cycle</td>
</tr>
<tr>
<td>2</td>
<td>Energy, Energy Transfer and General Energy Analysis</td>
<td>Forms of energy, Energy transfer by work and heat, First law of Thermodynamics, Energy efficiency</td>
</tr>
<tr>
<td>3</td>
<td>Properties of pure substances</td>
<td>Properties of pure substances, Phase change processes, Property diagram and property tables, Equation of state</td>
</tr>
<tr>
<td>7</td>
<td>Entropy</td>
<td>Entropy, Entropy diagrams, Entropy change, Entropy balance</td>
</tr>
</tbody>
</table>

https://unitguides.mq.edu.au/unit_offerings/164160/unit_guide/print
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit Student Policies (https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Unit guide MECH3001 Thermodynamics

<table>
<thead>
<tr>
<th>8</th>
<th>Exergy</th>
<th>Exergy, Exergy change of a system, Exergy transfer by heat, work and mass, Exergy balance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Vapor and Combined Power Cycles</td>
<td>Rankine Cycle, Efficiency of Rankine Cycle, Regeneration, Cogeneration, Combined Gas-Vapor Power Cycles</td>
</tr>
<tr>
<td>11</td>
<td>Refrigeration Cycles</td>
<td>Refrigeration and Heat Pumps, Reversed Carnot Cycle, Refrigeration Cycles</td>
</tr>
<tr>
<td>12</td>
<td>Gas Vapor Mixture and Air Conditioning</td>
<td>Gas Mixtures, Properties of Gas Vapor Mixtures, Properties of Air, Air-Conditioning Processes</td>
</tr>
<tr>
<td>13</td>
<td>Review</td>
<td>Overall Review</td>
</tr>
</tbody>
</table>
Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- Accessibility and disability support with study
• Mental health support
• Safety support to respond to bullying, harassment, sexual harassment and sexual assault
• Social support including information about finances, tenancy and legal issues
• Student Advocacy provides independent advice on MQ policies, procedures, and processes

Student Enquiries
Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Engineers Australia Competency Mapping

<table>
<thead>
<tr>
<th>EA Competency Standard</th>
<th>Unit Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and Skill Base</td>
<td></td>
</tr>
<tr>
<td>1.1 Comprehensive, theory-based understanding of the underpinning fundamentals applicable to the engineering discipline.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1.3 In-depth understanding of specialist bodies of knowledge</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1.4 Discernment of knowledge development and research directions</td>
<td></td>
</tr>
<tr>
<td>1.5 Knowledge of engineering design practice</td>
<td>1, 2, 3, 4</td>
</tr>
<tr>
<td>1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice.</td>
<td></td>
</tr>
<tr>
<td>Engineering Application Ability</td>
<td></td>
</tr>
<tr>
<td>2.1 Application of established engineering methods to complex problem solving</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2.2 Fluent application of engineering techniques, tools and resources.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2.3 Application of systematic engineering synthesis and design processes.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2.4 Application of systematic approaches to the conduct and management of engineering projects.</td>
<td></td>
</tr>
<tr>
<td>Professional and Personal Attributes</td>
<td>3.1 Ethical conduct and professional accountability.</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>3.2 Effective oral and written communication in professional and lay domains.</td>
</tr>
<tr>
<td></td>
<td>3.3 Creative, innovative and pro-active demeanour.</td>
</tr>
<tr>
<td></td>
<td>3.4 Professional use and management of information.</td>
</tr>
<tr>
<td></td>
<td>3.5 Orderly management of self, and professional conduct.</td>
</tr>
<tr>
<td></td>
<td>3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>

Unit information based on version 2024.01R of the Handbook.