PHYS2010
Classical and Quantum Oscillations and Waves
Session 1, In person-scheduled-weekday, North Ryde 2024
School of Mathematical and Physical Sciences

Contents
General Information 2
Learning Outcomes 3
General Assessment Information 3
Assessment Tasks 4
Delivery and Resources 6
Unit Schedule 6
Policies and Procedures 7

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Unit convenor and teaching staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convener, lecturer</td>
</tr>
<tr>
<td>David Spence</td>
</tr>
<tr>
<td>david.spence@mq.edu.au</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer, lab instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexei Gilchrist</td>
</tr>
<tr>
<td>alexei.gilchrist@mq.edu.au</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam Joyce</td>
</tr>
<tr>
<td>adam.joyce@mq.edu.au</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PHYS106 or PHYS1020 or PHYS143 or PHYS1520) and (MATH133 or MATH136 or MATH1020 or MATH1025)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2010 or MATH2055 or MATH235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-badged status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonic oscillation and wave motion are central to many areas of physics, ranging from the mechanical vibrations of machinery and nanoscale springs, to the propagation of sound and light waves, and the probability-amplitude waves encountered in quantum mechanics. This unit is concerned with describing the properties of harmonic oscillations and wave motion. The first half of the unit covers such topics as resonance, transients, coupled oscillators, transverse and longitudinal waves. The second half looks at interference and diffraction, firstly as important properties of waves in general, and then using the interference of matter waves as the starting point in studying the dual wave-particle nature of matter and the wave mechanics of Schrodinger, the basis of modern quantum mechanics. The laboratory program combines development of experimental skills such as problem solving, data analysis and report writing with a first course in computational physics (conducted in the python programming language) as well as techniques in electronic data acquisition widely used in industry and research.</td>
</tr>
</tbody>
</table>
Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

- **ULO1**: discuss how oscillatory dynamics is ubiquitous in the physical world and to be able to formulate a basic description of the oscillatory behaviour regardless of system.
- **ULO2**: derive and solve the mathematical description of oscillatory behaviour including damped, driven, and coupled systems.
- **ULO3**: explain the continuum limit of discrete oscillators as the basis of wave motion, and to predict basic wave phenomena.
- **ULO4**: demonstrate an understanding of the wave function formalism of quantum wave mechanics, the physical motivations behind this formalism, and its use to solve a range of basic problems.
- **ULO5**: demonstrate skill in undertaking detailed experimental investigations, presenting and analysing results and drawing conclusions based on the results.
- **ULO6**: demonstrate programming skill in the Python language and apply it in a laboratory setting.

General Assessment Information

Hurdle requirements: To pass this unit you must obtain a mark of at least:

- 50% in the unit overall, as well as
- 40% in the final examination, and
- 40% in each **individual assessable task** in the laboratory (practical and numerical), and
- must not miss more than four of the weekly In-SQTA quizzes.

Final Exam

Important information regarding the final exam:

If you receive special consideration for the final exam, a supplementary exam will be scheduled after the end of the normal exam period. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. Approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.
If your mark in the final examination is between 30% and 39% inclusive, you may be given a second and final chance to attain the required level of performance; the mark awarded for the second exam towards your final unit mark will be capped at 40%, and you will be allowed to sit the second exam only if this mark would be sufficient to pass the unit overall. If you are given a second opportunity to sit the final examination as a result of failing to meet the minimum mark required, you will be offered that chance during the same supplementary examination period and will be notified of the exact day and time after the publication of final results for the unit.

Late submission of lab reports

In this unit, late submissions for Lab reports will be accepted, with the Standard Late Penalty applied.

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark) will be applied each day a written assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. Submission time for all written assessments is set at 11:55 pm. A 1-hour grace period is provided to students who experience a technical concern.

If you are unable to attend a lab class, or are unable to submit a lab report on time, please apply for Special Consideration. Please only apply for special consideration for missing an SGTA quiz if you have missed more than two already.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final examination</td>
<td>45%</td>
<td>Yes</td>
<td>Examination period</td>
</tr>
<tr>
<td>Lab reports</td>
<td>10%</td>
<td>Yes</td>
<td>See unit schedule in iLearn</td>
</tr>
<tr>
<td>Weekly quiz</td>
<td>30%</td>
<td>Yes</td>
<td>Weekly</td>
</tr>
<tr>
<td>Python labs</td>
<td>15%</td>
<td>Yes</td>
<td>See unit schedule in iLearn</td>
</tr>
</tbody>
</table>

Final examination

Assessment Type 1: Examination
Indicative Time on Task 2: 20 hours
Due: Examination period
Weighting: 45%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

Examination in the university exam period, covering all the content from the unit.

On successful completion you will be able to:

- discuss how oscillatory dynamics is ubiquitous in the physical world and to be able to
formulate a basic description of the oscillatory behaviour regardless of system.

- derive and solve the mathematical description of oscillatory behaviour including damped, driven, and coupled systems.
- explain the continuum limit of discrete oscillators as the basis of wave motion, and to predict basic wave phenomena.
- demonstrate an understanding of the wave function formalism of quantum wave mechanics, the physical motivations behind this formalism, and its use to solve a range of basic problems.

Lab reports
Assessment Type 1: Lab report
Indicative Time on Task 2: 12 hours
Due: See unit schedule in iLearn
Weighting: 10%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

Report for each experimental task.

On successful completion you will be able to:
- demonstrate skill in undertaking detailed experimental investigations, presenting and analysing results and drawing conclusions based on the results.
- demonstrate programming skill in the Python language and apply it in a laboratory setting.

Weekly quiz
Assessment Type 1: Quiz/Test
Indicative Time on Task 2: 0 hours
Due: Weekly
Weighting: 30%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

A series of short quizzes, taken in SGTAs.

On successful completion you will be able to:
- discuss how oscillatory dynamics is ubiquitous in the physical world and to be able to formulate a basic description of the oscillatory behaviour regardless of system.
- derive and solve the mathematical description of oscillatory behaviour including damped, driven, and coupled systems.
• explain the continuum limit of discrete oscillators as the basis of wave motion, and to predict basic wave phenomena.
• demonstrate an understanding of the wave function formalism of quantum wave mechanics, the physical motivations behind this formalism, and its use to solve a range of basic problems.

Python labs
Assessment Type 1: Programming Task
Indicative Time on Task 2: 0 hours
Due: See unit schedule in iLearn
Weighting: 15%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

A series of computational tasks in the python language.

On successful completion you will be able to:
• demonstrate programming skill in the Python language and apply it in a laboratory setting.

1 If you need help with your assignment, please contact:
• the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
• the Writing Centre for academic skills support.

2 Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources
All activities -- lectures, SGTAs and laboratories will be delivered in-person, on campus. Lectures will be recorded via the echo system (audio and slides only).

All resources will be provided via iLearn.

Unit Schedule
For the schedule of practical and python labs, please see the iLearn page.

Schedule of topics for lectures and SGTAs:
Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit [Student Policies](https://students.mq.edu.au/support/study/policies). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.
To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.edu.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than eStudent, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free online writing and maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:
Student Enquiries
Got a question? Ask us via AskMQ, or contact Service Connect.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Unit information based on version 2024.02 of the Handbook