

ENGG2050

Engineering Systems and Design Thinking

Session 1, In person-scheduled-weekday, North Ryde 2025

School of Engineering

Contents

General Information	2	
Learning Outcomes	3	
General Assessment Information	3	
Assessment Tasks	4	
Delivery and Resources	6	
Policies and Procedures	6	
Changes from Previous Offering	8	
Engineers Australia Competency Mapping		
	9	

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff Unit Convenor Rex Di Bona rex.dibona@mq.edu.au Contact via Contact via Private message on iLearn 50 Waterloo Road By appointment Lecturer Viken Kortian viken.kortian@mq.edu.au Contact via Contact via Private message on iLearn 3 Management Drive By appointment

Credit points 10

Prerequisites ENGG1050 and COMP1000 and (MATH1010 or MATH1015 or MATH1007)

Corequisites

Co-badged status

Unit description

The 3rd SPINE unit aimed to develop professional, transferable and employability skills. The unit deals with the design of complex systems from a top-down perspective. Students will be exposed to different engineering management approaches (waterfall and Agile) and other tools involved in the field of systems engineering. Students will be able to apply Design Thinking processes and apply problem-solving heuristics to solve complex engineering systems.

Learning in this unit enhances student understanding of global challenges identified by the United Nations Sustainable Development Goals (UNSDGs) Industry, Innovation and Infrastructure

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: Evaluate a complex engineering problem from a range of perspectives, such as technological, social, environmental, financial, professional and ethical.

ULO2: Analyse and describe large engineering problems and related systems and subsystems.

ULO3: Apply appropriate engineering modelling and management tools in analysing a large engineering system.

ULO4: Apply design thinking and associated thinking techniques in generating a variety of solutions.

ULO5: Explain and integrate human and non-technical elements in an engineering project and its associated systems.

General Assessment Information

Grading and passing requirements for unit

In order to pass this unit, a student must submit a response for all assessment tasks, and obtain a mark of 50 or more the unit (i.e. obtain a passing grade P/ CR/ D/ HD).

We strongly encourage all students to actively participate in all learning activities. Regular engagement is crucial for your success in this unit, as these activities provide opportunities to deepen your understanding of the material, collaborate with peers, and receive valuable feedback from instructors, to assist in completing the unit assessments. Your active participation not only enhances your own learning experience but also contributes to a vibrant and dynamic learning environment for everyone

For further details about grading, please refer to the policies and procedures section.

Late Assessment Submission Penalty

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark of the task) will be applied for each day a written report or presentation assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. The submission time for all uploaded assessments is 11:55 pm. A 1-hour grace period will be provided to students who experience a technical concern. You should contact your convenor through iLearn for any anticipated issues that might prevent you from a timely submission of work.

Re-submission for any submitted and/or graded work will not be allowed.

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, please apply for Special Consideration.

Assessments where Late Submissions will be accepted: Case Study.

Assessments where Late Submissions will NOT be accepted: Online quizzes, in-class activities, or scheduled tests and exam must be undertaken at the time indicated in the unit guide. Should these activities be missed due to illness or misadventure, students may apply for Special Consideration.

All assessments are required to be submitted through the assessment submission portal on iLearn.

Special Consideration

The Special Consideration Policy aims to support students who have been impacted by shortterm circumstances or events that are serious, unavoidable and significantly disruptive, and which may affect their performance in assessment. If you experience circumstances or events that affect your ability to complete the assessments in this unit on time, please inform the convenor and submit a Special Consideration request through <u>ServiceConnect</u>. You must still complete and submit the assessment as soon as possible after the due date. In particular do NOT wait for the result of your Special Consideration request.

Assessment Tasks

Name	Weighting	Hurdle	Due
Case studies	30%	No	13/04/2025
Video submission and presentation	25%	No	Week 13
Final Quiz	45%	No	Week 12

Case studies

Assessment Type 1: Case study/analysis Indicative Time on Task 2: 20 hours Due: **13/04/2025** Weighting: **30%**

Case studies on engineering systems. Understanding an engineering system and how design allows the engineer to maximise success. This analysis will be on an existing engineering system.

On successful completion you will be able to:

• Evaluate a complex engineering problem from a range of perspectives, such as technological, social, environmental, financial, professional and ethical.

- Analyse and describe large engineering problems and related systems and subsystems.
- Explain and integrate human and non-technical elements in an engineering project and its associated systems.

Video submission and presentation

Assessment Type 1: Presentation Indicative Time on Task 2: 36 hours Due: **Week 13** Weighting: **25%**

Each group will create a video about their system design, and each student will present their section of that design, outlining the processes and thoughts that were involved in the design choices. The student will need to justify their design choices, in particular UN SDG choices as well as other "design for" choices.

On successful completion you will be able to:

- Analyse and describe large engineering problems and related systems and subsystems.
- Apply design thinking and associated thinking techniques in generating a variety of solutions.
- Explain and integrate human and non-technical elements in an engineering project and its associated systems.

Final Quiz

Assessment Type 1: Quiz/Test Indicative Time on Task 2: 29 hours Due: **Week 12** Weighting: **45%**

A computer based quiz. This quiz will be multiple choices, short answer and calculated answer. Students will need access to a laptop and excel or equivalent spreadsheet program. There will be quiz questions covering all aspects of the unit.

On successful completion you will be able to:

- Evaluate a complex engineering problem from a range of perspectives, such as technological, social, environmental, financial, professional and ethical.
- Analyse and describe large engineering problems and related systems and subsystems.

- Apply appropriate engineering modelling and management tools in analysing a large engineering system.
- Apply design thinking and associated thinking techniques in generating a variety of solutions.
- Explain and integrate human and non-technical elements in an engineering project and its associated systems.

¹ If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.

² Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

Delivery and Resources

SGTA sessions start in week 1

COMMUNICATIONS

Students are reminded the University will communicate all official notices to you by email to your university email account. Please read your @student.mq.edu.au email regularly, or forward it to an account you do read regularly. All announcements and other communications regarding this unit will be via the unit iLearn website, https://ilearn.mq.edu.au/ Please do not email unit convenors and other staff directly, but instead use the "Important Private Messages to Unit Contacts" forum on the unit website in iLearn.

TEXTBOOK

• B. S. Blanchard & W. J. Fabrycky, Systems Engineering and Analysis, Pearson, 5th edition, 2014.

It is required that every student have access to this textbook - weekly readings are assigned (see the Unit Schedule on the unit's iLearn website) and must be completed before class. A limited number of copies are available through the library.

OTHER RESOURCES

All unit resources and communications relating to this unit, including a week-by-week schedule of learning and assessment activities, will be provided via the iLearn unit website.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policie s.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit <u>Student Policies</u> (<u>https://students.mq.edu.au/su</u> <u>pport/study/policies</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit <u>Policy Central</u> (<u>https://policies.mq.e</u> <u>du.au</u>) and use the <u>search tool</u>.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than <u>eStudent</u>, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <u>eStudent</u>. For more information visit <u>connect.mq.edu.au</u> or if you are a Global MBA student contact globalmba.support@mq.edu.au

Academic Integrity

At Macquarie, we believe <u>academic integrity</u> – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free <u>online writing an</u> d maths support, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit <u>http://stu</u> dents.mq.edu.au/support/

Academic Success

Academic Success provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- · Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- · Accessibility and disability support with study
- Mental health support
- Safety support to respond to bullying, harassment, sexual harassment and sexual assault
- · Social support including information about finances, tenancy and legal issues
- <u>Student Advocacy</u> provides independent advice on MQ policies, procedures, and processes

Student Enquiries

Got a question? Ask us via the Service Connect Portal, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit <u>http://www.mq.edu.au/about_us/</u>offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering

This unit has been modified to adhere to the new 3 assessment task policy. The assessment tasks have been redone to cover the learning outcomes with fewer summative assessments. These assessments are now worth more each. Although no marks are associated with attendance, all activities provide you with key content designed to help you understand content and complete the assessment

The SGTA format has changed. Students now learn in groups, and are required to present in

groups each week. The quizzes are now formative (not counting towards the final grade). All work is expected to be completed each week, and students are warned that not completing work in a timely fashion will make it more and more difficult to catch up.

The scaffolding project has changed, and should have components for all disciplines.

Engineers Australia Competency Mapping

EA Competency Standard		Unit Learning Outcomes
Knowledge and Skill Base	1.1 Comprehensive, theory-based understanding of the underpinning fundamentals applicable to the engineering discipline.	
	1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing.	ULO3
	1.3 In-depth understanding of specialist bodies of knowledge	ULO3
	1.4 Discernment of knowledge development and research directions	
	1.5 Knowledge of engineering design practice	
	1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice.	ULO3, ULO5
Engineering Application Ability	2.1 Application of established engineering methods to complex problem solving	ULO1, ULO2, ULO3
	2.2 Fluent application of engineering techniques, tools and resources.	ULO2, ULO3, ULO5
	2.3 Application of systematic engineering synthesis and design processes.	ULO4
	2.4 Application of systematic approaches to the conduct and management of engineering projects.	ULO1, ULO2
Professional and Personal Attributes	3.1 Ethical conduct and professional accountability.	ULO1
	3.2 Effective oral and written communication in professional and lay domains.	ULO1
	3.3 Creative, innovative and pro-active demeanour.	
	3.4 Professional use and management of information.	
	3.5 Orderly management of self, and professional conduct.	
	3.6 Effective team membership and team leadership	

Unit information based on version 2025.05 of the Handbook

Unit guide ENGG2050 Engineering Systems and Design Thinking