

# **ELEC6202**

# **Power Electronics**

Session 1, In person-scheduled-weekday, North Ryde 2025

School of Engineering

# Contents

| General Information                   | 2     |
|---------------------------------------|-------|
| Learning Outcomes                     | 3     |
| General Assessment Information        | 3     |
| Assessment Tasks                      | 4     |
| Delivery and Resources                | 7     |
| Unit Schedule                         | 9     |
| Policies and Procedures               | 10    |
| Engineers Australia (EA) Competency I | Маррі |
| ng                                    | 11    |

#### Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

# **General Information**

Unit convenor and teaching staff Unit Convenor Leonardo Callegaro leonardo.callegaro@mq.edu.au Contact via email 44 Waterloo Road, Level1, Room 123 Wed 2:00-4:00PM (upon email appointment)

Credit points 10

Prerequisites

Corequisites

Co-badged status ELCT3005 Power Electronics

#### Unit description

This unit develops fundamental knowledge and skills in the area of power electronics converters and their typical applications. Foundation knowledge in semiconductor devices, passive components and linear circuit analysis is assumed. The unit extends those fundamentals to electrical energy conversion systems operating with relatively high current and voltage levels. Topics covered include: an introduction to power semiconductors switches and converters; power computations essential in analysing and designing power electronics circuits; pulse width modulation (PWM); circuit averaging principles; dc-dc converters and switch-mode dc power supplies; single and three phase inverters and rectifiers; harmonics and power quality; and utility applications of power electronics. This unit uses problem/team based learning approaches, where students have to choose a project topic and their team members, and then design, simulate, build and test a converter prototype. Appropriate simulation tools and a hardware-interfacing control board are used in the development of the project.

Learning in this unit enhances student understanding of global challenges identified by the United Nations Sustainable Development Goals (<u>UNSDG</u>s) Affordable and Clean Energy; Industry, Innovation and Infrastructure

## Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at <a href="https://www.mq.edu.au/study/calendar-of-dates">https://www.mq.edu.au/study/calendar-of-dates</a>

# **Learning Outcomes**

On successful completion of this unit, you will be able to:

**ULO1:** Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;

**ULO2:** Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;

**ULO3:** Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;

**ULO4:** Design, model/build and analyse a complete power converter application based on a set of user specifications;

**ULO5:** Demonstrate knowledge of emerging applications of power electronics in renewable energy systems, energy storage systems and micro-grids;

**ULO6:** Evaluate benefits to power quality achieved by adopting appropriate power electronic converters.

# **General Assessment Information**

#### Grading and Passing Requirement for the Unit

- In order to pass this Unit a student must obtain a mark of 50 or more for the Unit (i.e. obtain a passing grade P, CR, D, or HD)
- For further details about grading, please refer below in the policies and procedures section.
- If you receive Special Consideration for the oral presentation and demonstration of the Project, a supplementary conventional exam will be scheduled by the faculty during a supplementary exam period, typically about 3 to 4 weeks after the normal exam period. By making a Special Consideration application for the oral presentation and demonstration of the Project you are declaring yourself available for a conventional exam during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to applying. Approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.

#### Attendance and Participation

We strongly encourage all students to actively participate in all learning activities. Regular

engagement is crucial for your success in this unit, as these activities provide opportunities to deepen your understanding of the material, collaborate with peers, and receive valuable feedback from instructors, to assist in completing the unit assessments. Your active participation not only enhances your own learning experience but also contributes to a vibrant and dynamic learning environment for everyone.

#### Late Assessment Submission and Penalties

- Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark of the task) will be applied for each day a written report or presentation assessment is not submitted, up until the 7th day (including weekends).
  After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. The submission time for all uploaded assessments is **11:55 pm**. A 1-hour grace period will be provided to students who experience a technical concern.
- For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, please apply for Special Consideration.

#### Assessments where Late Submission will (and will not) be accepted

- Pre-Class Quiz (Lectorials) NO, unless Special Consideration is granted.
- Assignments (PC Labs) NO, unless Special Consideration is granted.
- Class Quiz (Lectorials) NO, unless Special Consideration is granted.
- Assessment (Project) YES, Standard Late Penalties applies to the iLearn submission.

#### **Re-Submission of work**

Re-submission of work is not accepted.

#### **Special Consideration**

The <u>Special Consideration Policy</u> aims to support students who have been impacted by shortterm circumstances or events that are serious, unavoidable and significantly disruptive, and which may affect their performance in assessment. If you experience circumstances or events that affect your ability to complete the assessments in this unit on time, please inform the convenor and submit a Special Consideration request through <u>https://connect.mq.edu.au</u>.

## Assessment Tasks

| Name                  | Weighting | Hurdle | Due                   |
|-----------------------|-----------|--------|-----------------------|
| Pre-Class Quiz        | 10%       | No     | Week 2, 3, 4, 5, 6    |
| Assignments (PC Labs) | 20%       | No     | Week 2, 3, 4, 5, 6, 7 |
| Class Quiz            | 20%       | No     | Week 8                |

| Name                 | Weighting | Hurdle | Due         |
|----------------------|-----------|--------|-------------|
| Assessment (Project) | 50%       | No     | Week 13, 14 |

## Pre-Class Quiz

Assessment Type <sup>1</sup>: Quiz/Test Indicative Time on Task <sup>2</sup>: 5 hours Due: **Week 2, 3, 4, 5, 6** Weighting: **10%** 

Students are expected to go through the iLearn content, understand the theory and attempt the quiz

On successful completion you will be able to:

- Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
- Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Demonstrate knowledge of emerging applications of power electronics in renewable energy systems, energy storage systems and micro-grids;
- Evaluate benefits to power quality achieved by adopting appropriate power electronic converters.

# Assignments (PC Labs)

Assessment Type 1: Problem set Indicative Time on Task 2: 12 hours Due: **Week 2, 3, 4, 5, 6, 7** Weighting: **20%** 

This evaluation focuses on students ability to perform modelling, design and implementation of power electronics systems using PLECS.

On successful completion you will be able to:

- Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Design, model/build and analyse a complete power converter application based on a set of user specifications;
- Demonstrate knowledge of emerging applications of power electronics in renewable energy systems, energy storage systems and micro-grids;
- Evaluate benefits to power quality achieved by adopting appropriate power electronic converters.

### Class Quiz

Assessment Type <sup>1</sup>: Quiz/Test Indicative Time on Task <sup>2</sup>: 5 hours Due: **Week 8** Weighting: **20%** 

The quiz will assess both factual knowledge and problem solving.

On successful completion you will be able to:

- Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Demonstrate knowledge of emerging applications of power electronics in renewable energy systems, energy storage systems and micro-grids;
- Evaluate benefits to power quality achieved by adopting appropriate power electronic converters.

# Assessment (Project)

Assessment Type 1: Project Indicative Time on Task 2: 20 hours Due: **Week 13, 14** Weighting: **50%** 

This is a major assessment of this Unit. It will consist of project report, oral presentation and

demonstration of the project.

On successful completion you will be able to:

- Describe the relationship between physical structure and performance characteristics of passive electrical components and active semiconductor power electronic devices;
- Analyse and simulate power electronic circuits and derive accepted performance parameters, including power quality metrics;
- Design and critically assess key aspects of power converters such as AC-DC, DC-DC and DC-AC converters;
- Design, model/build and analyse a complete power converter application based on a set of user specifications;
- Demonstrate knowledge of emerging applications of power electronics in renewable energy systems, energy storage systems and micro-grids;
- Evaluate benefits to power quality achieved by adopting appropriate power electronic converters.

<sup>1</sup> If you need help with your assignment, please contact:

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- the Writing Centre for academic skills support.

<sup>2</sup> Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

# **Delivery and Resources**

#### Methods of Communication

- Students are reminded the university will communicate all official notices by email to official MQ student's account. Students should read their @student.mq.edu.au email regularly (or forward it to an account they check regularly).
- All announcements and other communication regarding this Unit will be delivered via the iLearn platform.
- Queries to convenors can either be placed on the iLearn discussion board or sent to the unit convenor via the contact email on iLearn .

#### **Unit Website**

- The iLearn website for this unit can be found at: https://ilearn.mq.edu.au/login/.
  - Note! All information and communications relevant to this Unit will be via the iLearn website.

#### Textbook

- Power Electronics: A First Course, November 2022, Ned Mohan, Siddharth Raju, Wiley, ISBN: 9781119818564 (Digital version recommended).
  - Note! Links will be provided to specific sections of the Digital version in iLearn for each Lectorial.
- Remark: This textbook is used extensively as a reference in all activities of this Unit. All students are expected to have access to this textbook.
- Remark: While the latest edition of the textbook is recommended, this is not mandatory and students can avail themselves of previous printed or online editions of the textbook
- <u>Support Website:</u> <u>https://highered.au.wiley.com/support/students/</u> link to the Wiley's digital solutions textbook and courseware support page.

#### Lectorials

- There will be a Lectorial (3 hours) for every week in the first part of the semester (Weeks 1-7). The Lectorial will comprise of: discussion session on fundamental knowledge;
   practical examples; interactive problem solving involving students.
- Lectorials are a combination of traditional lecture and practice-based teaching modes, and are designed to improve student engagement inside/outside classes.
- The Lectorials are organised in a <u>flipped classroom fashion</u>, students are expected to go thorugh the recommneded weekly contents before each lectorial takes place.
- Outside class
  - links to E-Text specific sections, brief videos and/or lecture notes are posted in iLearn each week.
  - students are expected to read these E-Text sections, try to solve any given examples, and watch any videos and/or read any posted notes prior to attending the Lectorials.
- Inside class
  - discussion sessions on fundamental principles.
  - practical examples.
  - interactive problem solving involving students.

#### Laboratories

• PC Lab activities start from Week 1 and take place once a week (Weeks 1-7) according

to the Unit schedule.

- Note! Students must enrol in one of the available weekly Lab sessions.
- Interactive PC Labs use PLECS software platform to assist with the modelling and design of power electronics converters.

On-campus activities commence in Week 1. Students should contact the Unit convenor as soon as possible if they are unable to get back to campus in time.

#### **Projects**

- Project activities take place once a week in Weeks 8-13.
- The Projects cover design and practical aspects of power electronics.
- Students are required to form teams.
  - All Project activities are performed in teams;

#### Technology

- The laboratory work will rely on the use of PLECS software platform, an industrystandard software for power electronics design.
- PLECS Standalone software can be downloaded for free from Plexim website and/or or can be used on dedicated Lab PCs.
  - Note! The PLECS server license will cover only PCs connected to MQ online network.
  - Students are encouraged to dowload and install PLECS in their own computer.
    Licensing instructions on how to obtain a 1-year free version of PLECS will be released by the teaching staff at the start of semester.
- Each team will be given a hardware kit for the second half of the semester to perform experimental activities.

#### Web Resources

- PLECS support:
  - https://plexim.com/support
    - PLECS videos
    - Application examples
    - Technical solutions
    - Installation help

## **Unit Schedule**

An up to date weekly unit schedule is posted on the iLearn website.

# **Policies and Procedures**

Macquarie University policies and procedures are accessible from Policy Central (https://policie s.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
- Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit <u>Student Policies</u> (<u>https://students.mq.edu.au/support/study/policies</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit <u>Policy Central</u> (<u>https://policies.mq.e</u> <u>du.au</u>) and use the <u>search tool</u>.

### **Student Code of Conduct**

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

### Results

Results published on platform other than <u>eStudent</u>, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <u>eStudent</u>. For more information visit <u>connect.mq.edu.au</u> or if you are a Global MBA student contact globalmba.support@mq.edu.au

# Academic Integrity

At Macquarie, we believe academic integrity – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free <u>online writing an</u> d maths support, academic skills development and wellbeing consultations.

# Student Support

Macquarie University provides a range of support services for students. For details, visit <u>http://stu</u> dents.mq.edu.au/support/

### Academic Success

Academic Success provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- · Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- Subject and Research Guides
- Ask a Librarian

# Student Services and Support

Macquarie University offers a range of Student Support Services including:

- IT Support
- · Accessibility and disability support with study
- Mental health support
- <u>Safety support</u> to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues
- <u>Student Advocacy</u> provides independent advice on MQ policies, procedures, and processes

## **Student Enquiries**

Got a question? Ask us via the Service Connect Portal, or contact Service Connect.

## IT Help

For help with University computer systems and technology, visit <u>http://www.mq.edu.au/about\_us/</u>offices\_and\_units/information\_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

# **Engineers Australia (EA) Competency Mapping**

EA Competency Standard

Unit Learning Outcomes

#### Unit guide ELEC6202 Power Electronics

| Knowledge and Skill<br>Base             | 1.1 Comprehensive, theory-based understanding of the underpinning fundamentals applicable to the engineering discipline. | ULO1, ULO2, ULO5                      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                         | 1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing.                                     | ULO1, ULO2, ULO5                      |
|                                         | 1.3 In-depth understanding of specialist bodies of knowledge                                                             | ULO1, ULO2, ULO3,<br>ULO5             |
|                                         | 1.4 Discernment of knowledge development and research directions                                                         |                                       |
|                                         | 1.5 Knowledge of engineering design practice                                                                             | ULO1, ULO2, ULO5,<br>ULO6             |
|                                         | 1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice.                     | ULO5                                  |
| Engineering<br>Application Ability      | 2.1 Application of established engineering methods to complex problem solving                                            | ULO1, ULO2, ULO5                      |
|                                         | 2.2 Fluent application of engineering techniques, tools and resources.                                                   | ULO1, ULO2, ULO3,<br>ULO4, ULO5       |
|                                         | 2.3 Application of systematic engineering synthesis and design processes.                                                | ULO1, ULO2, ULO3,<br>ULO4, ULO5, ULO6 |
|                                         | 2.4 Application of systematic approaches to the conduct and management of engineering projects.                          | ULO3, ULO5, ULO6                      |
| Professional and<br>Personal Attributes | 3.1 Ethical conduct and professional accountability.                                                                     | ULO4                                  |
|                                         | 3.2 Effective oral and written communication in professional and lay domains.                                            | ULO4                                  |
|                                         | 3.3 Creative, innovative and pro-active demeanour.                                                                       | ULO4, ULO5                            |
|                                         | 3.4 Professional use and management of information.                                                                      | ULO4, ULO5                            |
|                                         | 3.5 Orderly management of self, and professional conduct.                                                                | ULO4                                  |
|                                         | 3.6 Effective team membership and team leadership                                                                        | ULO4                                  |

Unit information based on version 2025.03 of the Handbook