

BMOL6432

Molecular Biology and Genomics

Session 1, In person-scheduled-weekday, North Ryde 2025

School of Natural Sciences

Contents

General Information	2
Learning Outcomes	3
General Assessment Information	3
Assessment Tasks	5
Delivery and Resources	7
Unit Schedule	8
Policies and Procedures	9
Changes from Previous Offering	11

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff

Unit Convenor

Ian Paulsen

ian.paulsen@mq.edu.au

Contact via Email

6 Wally's Walk 311

By appointment

Scientific Officer

Ashwini Nagaraja

ashwini.nagaraja@mq.edu.au

Scientific Officer

Gurpreet Kaur

gurpreet.kaur@mq.edu.au

Credit points

10

Prerequisites

Admission to GradDipBiotech or MBiotech

Corequisites

Co-badged status

BMOL6432

Unit description

Molecular biology is a central science in twenty-first century biology and biotechnology. Understanding the fundamentals of molecular biology is essential for many other fields in the life sciences, including microbiology, cell biology, immunology, and development. Molecular biology makes a significant and increasing contribution to major sectors of our society including agriculture and medicine, and is also important in environmental science and forensics. In this unit we explore topics that allow students to obtain an advanced understanding of the mechanisms of molecular biology, including those of DNA replication and recombination, prokaryotic gene expression, eukaryotic gene expression, mobile elements, the functions of the nucleus, and epigenetics. We also address topics on the rapidly changing technologies in molecular biology, including those used in genome sequencing, metagenomics, systems and synthetic biology. Practical sessions complement the lectures and provide students with hands-on experience with a range of critical laboratory skills including those required for DNA and RNA isolation, PCR and RT-PCR, cloning, and bioinformatics. Students gain experience in working with both bacterial and eukaryotic systems in the laboratory classes so that their skills and experience are valuable for a variety of positions in both industry and research.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

ULO1: Describe the theory behind and demonstrate competency in the use of a range of molecular biology experimental techniques, including PCR, restriction enzyme digestion, gel electrophoresis, cloning, gene editing, DNA sequencing and DNA hybridization.

ULO2: Describe and discuss essential molecular processes in the cell, especially as related to DNA and RNA. These molecular processes include transcription, translation, DNA replication, recombination, DNA repair, and transposition.

ULO3: Relate the revolutionary impact of genomics across all biological sciences.

ULO4: Analyse and interpret experimental data and present this in a structured report utilising appropriate scientific referencing.

General Assessment Information

Requirements to Pass this Unit

To pass this unit you must:

Achieve a total mark equal to or greater than 50% across all assessments

Note: There are no hurdle assessments

Assignments

All assignments must be submitted as soft copy on the date specified.

All written work must be submitted to Turnitin for plagiarism checking. Instructions will be provided on iLearn.

Criteria and standards required for the assessment tasks will be available on iLearn.

Note the standardised 11:55pm submission time for assessments

Extensions will only be granted under exceptional circumstances.

Late Assessment Submission Penalty

Unless a Special Consideration request has been submitted and approved, a 5% penalty (of the total possible mark of the task) will be applied for each day a written report or presentation assessment is not submitted, up until the 7th day (including weekends). After the 7th day, a grade of '0' will be awarded even if the assessment is submitted. The submission time for all uploaded assessments is 11:55 pm. A 1-hour grace period will be provided to students who experience a technical concern.

For any late submission of time-sensitive tasks, such as scheduled tests/exams, performance assessments/presentations, and/or scheduled practical assessments/labs, please apply for Spec ial Consideration.

Late submissions will be accepted for all assessments in this unit with penalties.

General Faculty Policy on assessment submission deadlines and late submissions: Online quizzes, in-class activities, or scheduled tests and exam must be undertaken at the time indicated in the unit guide. Should these activities be missed due to illness or misadventure, students may apply for Special Consideration.

Special Consideration

The <u>Special Consideration Policy</u> aims to support students who have been impacted by short-term circumstances or events that are serious, unavoidable and significantly disruptive, and which may affect their performance in assessment. If you experience circumstances or events that affect your ability to complete the assessments in this unit on time, please inform the convenor and submit a Special Consideration request through <u>ask.mq.edu.au</u>.

Weekly practice-based tasks: To pass the unit you need to demonstrate ongoing development of skills and application of knowledge in all of the weekly practical classes. If you miss a weekly

practical class due to a serious, unavoidable and significant disruption, contact your convenor ASAP as you may be able to attend another class that week. If it is not possible to attend another class, you should still contact your convenor for access to class material to review in your own time.

We will communicate with you via your university email or through announcements on iLearn. Queries to convenors can either be placed on the iLearn discussion board or sent to ian.paulsen@mq.edu.au from your university email address.

Assessment Tasks

Name	Weighting	Hurdle	Due
Lab reports	35%	No	Apr 1, Apr 15, Jun 3
Midsemester Test	10%	No	07/04/2025
Synthetic Biology Challenge	15%	No	27/05/2025
Final Examination	40%	No	University Examination Period, June 2025

Lab reports

Assessment Type 1: Lab report Indicative Time on Task 2: 30 hours

Due: Apr 1, Apr 15, Jun 3

Weighting: 35%

Three lab reports 1500 words each

On successful completion you will be able to:

- Describe the theory behind and demonstrate competency in the use of a range of molecular biology experimental techniques, including PCR, restriction enzyme digestion, gel electrophoresis, cloning, gene editing, DNA sequencing and DNA hybridization.
- Analyse and interpret experimental data and present this in a structured report utilising appropriate scientific referencing.

Midsemester Test

Assessment Type 1: Quiz/Test Indicative Time on Task 2: 10 hours

Due: **07/04/2025** Weighting: **10%**

Test carried out during regularly scheduled laboratory time.

On successful completion you will be able to:

 Describe the theory behind and demonstrate competency in the use of a range of molecular biology experimental techniques, including PCR, restriction enzyme digestion, gel electrophoresis, cloning, gene editing, DNA sequencing and DNA hybridization.

Synthetic Biology Challenge

Assessment Type 1: Qualitative analysis task

Indicative Time on Task 2: 10 hours

Due: **27/05/2025** Weighting: **15%**

This is a written group-based report on the design phase of synthetic biology

On successful completion you will be able to:

- Relate the revolutionary impact of genomics across all biological sciences.
- Analyse and interpret experimental data and present this in a structured report utilising appropriate scientific referencing.

Final Examination

Assessment Type 1: Examination Indicative Time on Task 2: 18 hours

Due: University Examination Period, June 2025

Weighting: 40%

Final Examination held in university examination period

On successful completion you will be able to:

 Describe the theory behind and demonstrate competency in the use of a range of molecular biology experimental techniques, including PCR, restriction enzyme digestion, gel electrophoresis, cloning, gene editing, DNA sequencing and DNA hybridization.

- Describe and discuss essential molecular processes in the cell, especially as related to DNA and RNA. These molecular processes include transcription, translation, DNA replication, recombination, DNA repair, and transposition.
- Relate the revolutionary impact of genomics across all biological sciences.

- the academic teaching staff in your unit for guidance in understanding or completing this type of assessment
- · the Writing Centre for academic skills support.

Delivery and Resources

We strongly encourage all students to actively participate in all learning activities. Regular engagement is crucial for your success in this unit, as these activities provide opportunities to deepen your understanding of the material, collaborate with peers, and receive valuable feedback from instructors, to assist in completing the unit assessments. Your active participation not only enhances your own learning experience but also contributes to a vibrant and dynamic learning environment for everyone.

Week 1 Classes: In this unit both lectures and Practicals start from Week 1.

Lectures: There are two weekly lectures of 1 hour each on **Tuesday 3-4 pm** and **Wednesday 11-12 pm** which will be held at **14SCO T2 Lecture Theatre**. Lecture recordings and graphics slides are available online through iLearn (https://ilearn.mq.edu.au/login/MQ/), although lecture attendance in person is highly recommended.

Practicals: There is one weekly practical session of 3 hours on Monday 10-1pm (practical groups 1 and 2) and Monday 2-5pm (practical groups 3 and 4) at 14 Eastern Road Science Labs 130 and 150. Attendance at practical sessions is a compulsory component of this unit. The practical manual is also available online through iLearn.

Required and Recommended Texts

The course syllabus is defined by all of the subject material presented in lectures and practicals, much of which is beyond standard textbooks. The prescribed text for this unit is Molecular Biology Fifth edition by Robert F Weaver. Available from the Co-op bookshop. The following texts may also be useful and are available in the library:

GenesIX by Benjamin Lewin

Mobile Genetic Elements by Sherratt

Molecular Cloning: A Laboratory Manual by Maniatis, Fritsch and Sambrook

¹ If you need help with your assignment, please contact:

² Indicative time-on-task is an estimate of the time required for completion of the assessment task and is subject to individual variation

An Introduction to Genetic Engineering by Des Nicholl.

Technology Requirements

Within this Unit, you will be introduced to web-based search engines that are commonly used in molecular biology. Our expectation is that you will be able to readily access the internet and have a computer available to you for web browsing and preparation of your laboratory reports. Handwritten reports will not be accepted. Your laboratory reports will be submitted and circulated via the online Turnitin program on iLearn, for which access instructions will be given at submission time. Your practical reports will require you to carry out minor computational tasks, for which a calculator and access to basic statistical tools will be required. We place a large emphasis on correct referencing style in all your reports, and use of the program EndNote is encouraged, but not essential.

Methods of Communication: We will communicate with you via your university email and through announcements on iLearn. Queries to convenors can either be placed on the iLearn discussion board or sent to the unit convenor via the contact email on iLearn

Unit Schedule

Lecture Schedule

Week	Date	Lecture	Title	Lecturer
1	Feb 25	1	Introduction/What is Molecular Biology/Genome Structure	Haynes
	Feb 26	2	Gene Organization/function	Haynes
2	Mar 4	3	Molecular Biology Techniques	Haynes
	Mar 5	4	Molecular Biology Techniques	Haynes
3	Mar 11	5	Molecular Seperation Techniques	Haynes
	Mar 12	6	Identifying and Quantifying DNA	Haynes
4	Mar 18	7	Transcription in Prokaryotes	Paulsen
	Mar 19	8	Structure of Prokaryotic Operons	Paulsen
5	Mar 25	9	Bacterial Gene Regulation	Paulsen
	Mar 26	10	Transcription in Eukaryotes and Eukaryotic Gene Regulation	Paulsen

6	Apr 1	11	Nucleosomes/Histones/Chromatin	Paulsen
	Apr 2	12	Messenger RNA splicing	Paulsen
7	Apr 8	13	Mechanism of Translation	Paulsen
	Apr 9	14	DNA Recombination	Cain
			SEMESTER BREAK: Apr 14- Apr 27	
8	Apr 29	15	DNA replication	Cain
	Apr 30	16	Ribosomes and transfer RNA	Paulsen
9	May 6	17	DNA Repair	Paulsen
	May 7	18	Mobile DNA elements #1	Paulsen
10	May 13	19	Mobile DNA elements #2	Paulsen
	May 14	20	Genome Sequencing	Paulsen
11	May 20	21	Genomes, Pan-Genomes and Metagenomics	Paulsen
	May 21	22	Bioinformatics and Genome Annotation	Paulsen
12	May 27	23	Functional Genomics and Systems Biology	Paulsen
	May 28	24	Synthetic Biology I	Paulsen
13	Jun 3	25	Guest Lecture	
	Jun 4	26	Revision	Paulsen

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central (https://policies.mq.edu.au). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- · Fitness to Practice Procedure

- · Assessment Procedure
- Complaints Resolution Procedure for Students and Members of the Public
- Special Consideration Policy

Students seeking more policy resources can visit <u>Student Policies</u> (<u>https://students.mq.edu.au/support/study/policies</u>). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

To find other policies relating to Teaching and Learning, visit Policy Central (https://policies.mq.e du.au) and use the search tool.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/admin/other-resources/student-conduct

Results

Results published on platform other than <u>eStudent</u>, (eg. iLearn, Coursera etc.) or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <u>eStudent</u>. For more information visit <u>connect.mq.edu.au</u> or if you are a Global MBA student contact <u>globalmba.support@mq.edu.au</u>

Academic Integrity

At Macquarie, we believe <u>academic integrity</u> – honesty, respect, trust, responsibility, fairness and courage – is at the core of learning, teaching and research. We recognise that meeting the expectations required to complete your assessments can be challenging. So, we offer you a range of resources and services to help you reach your potential, including free <u>online writing and maths support</u>, academic skills development and wellbeing consultations.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

The Writing Centre

The Writing Centre provides resources to develop your English language proficiency, academic writing, and communication skills.

- Workshops
- Chat with a WriteWISE peer writing leader
- Access StudyWISE
- · Upload an assignment to Studiosity
- Complete the Academic Integrity Module

The Library provides online and face to face support to help you find and use relevant information resources.

- · Subject and Research Guides
- Ask a Librarian

Student Services and Support

Macquarie University offers a range of **Student Support Services** including:

- IT Support
- · Accessibility and disability support with study
- Mental health support
- <u>Safety support</u> to respond to bullying, harassment, sexual harassment and sexual assault
- Social support including information about finances, tenancy and legal issues
- Student Advocacy provides independent advice on MQ policies, procedures, and processes

Student Enquiries

Got a question? Ask us via the Service Connect Portal, or contact Service Connect.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Changes from Previous Offering

We value student feedback to be able to continually improve the way we offer our units. As such we encourage students to provide constructive feedback via student surveys, to the teaching staff directly, or via the FSE Student Experience & Feedback link in the iLearn page. Student feedback from the previous offering of this unit was very positive overall, with students pleased with the clarity around assessment requirements and the level of support from teaching staff. As such, no change to the delivery of the unit is planned, however we will continue to strive to improve the level of support and the level of student engagement

Unit information based on version 2025.02 of the Handbook