GEOS776
Advanced Geochemical Applications and Techniques
S1 Day 2015
Dept of Earth and Planetary Sciences

Contents

General Information .. 2
Learning Outcomes .. 2
Assessment Tasks .. 3
Delivery and Resources 6
Unit Schedule ... 7
Learning and Teaching Activities 11
Policies and Procedures 12
Graduate Capabilities 13

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit Convenor
Norman Pearson
norman.pearson@mq.edu.au
Contact via norman.pearson@mq.edu.au
E5B 205
9:00-5:30 Mon-Fri

Credit points
4

Prerequisites
Admission to MRes

Corequisites

Co-badged status
Co-badged with GEOS876

Unit description
This unit provides hands-on training and operation of state-of-the-art instrumentation used in inorganic geochemical analysis to determine major element, trace element and isotopic composition of rocks and minerals. The unit comprises lectures, group instrument instruction and individual projects. The project includes planning the analytical strategy, data collection, data presentation and interpretation.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. explain the basic principles of how the XRF, EMP and ICP-MS operate
2. be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
3. acquire the basic skills to operate the EMP and laser ablation ICP-MS
4. devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
5. develop the knowledge to determine the uncertainty of analytical results
6. critically evaluate the quality of data obtained using different analytical methods
7. compare the results obtained from different analytical techniques
8. interpret geochemical data using the knowledge of analytical uncertainty
9. organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>10%</td>
<td>20 March 2015</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>30%</td>
<td>22 April 2015</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>20%</td>
<td>22 May 2015</td>
</tr>
<tr>
<td>Seminar</td>
<td>10%</td>
<td>29 May 2015</td>
</tr>
<tr>
<td>Test 1</td>
<td>10%</td>
<td>24 April 2015</td>
</tr>
<tr>
<td>Test 2</td>
<td>10%</td>
<td>3 June 2015</td>
</tr>
<tr>
<td>Class Participation</td>
<td>10%</td>
<td>Each session</td>
</tr>
</tbody>
</table>

Assignment 1
Due: 20 March 2015
Weighting: 10%

Assignment 1 will be based on the concepts and skills covered in days 1, 2 and 3. The exercises undertaken in the tutorials in these sessions will provide a framework for self-assessment of your progress and in the preparation of the assignments.

This Assessment Task relates to the following Learning Outcomes:
• be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication
Assignment 2
Due: 22 April 2015
Weighting: 30%

This practical project will involve EMP instrument usage and the data generated during the practical will be used in the assignment.

This Assessment Task relates to the following Learning Outcomes:
• explain the basic principles of how the XRF, EMP and ICP-MS operate
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• interpret geochemical data using the knowledge of analytical uncertainty
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assignment 3
Due: 22 May 2015
Weighting: 20%

This practical project will involve use of the laser ablation ICP-MS and the data generated during the practical will be used in the assignment.

This Assessment Task relates to the following Learning Outcomes:
• explain the basic principles of how the XRF, EMP and ICP-MS operate
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• interpret geochemical data using the knowledge of analytical uncertainty
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication
Seminar
Due: 29 May 2015
Weighting: 10%

The theme of the seminar day is “Recent Advances in Analytical Geochemistry”. A list of topics will be provided in week 2 and you will choose a topic based on one of the instrument techniques covered in the course. Your brief will be to prepare a brief overview of the advances in the analytical method and its application. Each student will be required to produce a PowerPoint presentation (maximum 5 slides) on your topic and give this as a short seminar. A mark will be awarded based on content and presentation.

This Assessment Task relates to the following Learning Outcomes:

• be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• critically evaluate the quality of data obtained using different analytical methods
• interpret geochemical data using the knowledge of analytical uncertainty
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Test 1
Due: 24 April 2015
Weighting: 10%

This will be an ‘in-class test’ and involve a 1-hour written examination. This will cover the material presented in the first half of the unit and consist of a combination of short answer questions on definitions and concepts and an essay section requiring further descriptions of concepts and theory.

This Assessment Task relates to the following Learning Outcomes:

• explain the basic principles of how the XRF, EMP and ICP-MS operate
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry

Test 2
Due: 3 June 2015
Weighting: **10%**

This will be an ‘in-class test’ and involve a 1-hour written examination. This will cover the material presented in the second half of the unit and consist of a combination of short answer questions on definitions and concepts and an essay section requiring further descriptions of concepts and theory.

This Assessment Task relates to the following Learning Outcomes:

- compare the results obtained from different analytical techniques

Class Participation

Due: Each session
Weighting: **10%**

The class mark will be awarded on the basis of performance in the laboratory practicals and participation in class discussions.

This Assessment Task relates to the following Learning Outcomes:

- explain the basic principles of how the XRF, EMP and ICP-MS operate
- critically evaluate the quality of data obtained using different analytical methods
- compare the results obtained from different analytical techniques
- interpret geochemical data using the knowledge of analytical uncertainty
- organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Delivery and Resources

Required and Recommended Texts

There are no prescribed textbooks for this course. A copy of Powerpoint lecture presentations will be available on the unit’s WEB page.

Unit Web Page

Web resources are on the GEOS776 page in iLearn (http://www.mq.edu.au/iLearn/student_info/index.htm).

This site will have pdfs of lectures, tutorials and assignments, and echo recordings of pre-recorded lectures.

Information for students about access to online units is available at https://ilearn.mq.edu.au/login/
Unit Schedule

Unit of study timetable 2015

Week 1: Introduction to Geochemical Analysis
25 February 2015: 12:00 – 14:00 Lecture 1 Introduction
• Overview of analytical methods, instruments and laboratories
• Analytical procedure
• Concepts in analytical geochemistry
• Instruments and methods – a virtual tour of the Geochemical Analysis Unit
• Measurement and calibration
• Analytical strategy

27 February 2015: 14:00 – 16:00 Geochemical Analysis – Basics
Tutorial 1
• Instrument calibration and standardisation
• Standards and Reference Materials
• Reporting and presenting geochemical data

Week 2: Sampling and Planning an Analytical Program
4 March 2015: 12:00 – 14:00 Lecture 2
• Introduction to uncertainty
• Sampling
• Uncertainty of sampling
• Sampling strategy
• Instrument limits of error

6 March 2015: 14:00 – 16:00 Tutorial 2 Planning an Analytical Program

Week 3: Data Quality
11 March 2015: 12:00 – 14:00 Lecture 3 Geochemical data

https://unitguides.mq.edu.au/unit_offerings/45085/unit_guide/print
Unit guide GEOS776 Advanced Geochemical Applications and Techniques

• Basic statistics refresher
• Uncertainties in quantitative analysis
• Accuracy and precision
• Internal and external precision
• Counting statistics
• Outliers

13 March 2015: 14:00 – 16:00
Tutorial 3 Quality assurance – how reliable are your analytical data? Standards and Reference Materials

Week 4: X-ray Analytical Techniques I

18 March 2015: 12:00 – 14:00 Lecture 4 X-ray spectrometry – Basic quantitative X-ray analysis
• What are X-rays?
• How are X-rays produced?
• Characteristic X-rays
• X-ray lines and spectra
• Wavelength X-ray spectrometer
• Energy X-ray spectrometer

20 March 2015: 14:00 – 16:00 Tutorial 4 Characteristic X-ray lines and spectra; Mineral Identification

Week 5: X-ray Analytical Techniques II

25 March 2015: 12:00 – 14:00 Lecture 5 X-ray spectrometry – Basic quantitative X-ray analysis
• X-ray fluorescence spectrometry
• Interaction of X-rays and matter
• Attenuation and fluorescence
• Matrix corrections
27 March 2015: 14:00 – 16:00 Lecture 6 Mineral analysis I – major elements

- Electron Microprobe (EMP) Instrumentation
- Quantitative mineral analysis
- Interaction of the electron beam and material
- Electron imaging
- ZAF matrix corrections
- phi-rho-z matrix corrections
- Preparation of samples

Week 6: X-ray Analytical Techniques III

1 April 2015: 12:00 – 14:00 Tutorial 6 Mineral chemistry – data reduction and quality

1-2 April 2015: Electron microprobe practical sessions (times to be advised)

Week 7: Data reporting and presentation

22 April 2015: 12:00 – 14:00 Workshop Data presentation in your thesis or manuscript; Self-assessment and critical review

24 April 2015: 14:00 – 16:00 Assessment In-class Test q

Week 8: Spectroscopy

29 April 2015: 12:00 – 14:00 Lecture 7 Spectroscopy

- Principles of spectroscopy
- Raman spectroscopy
- Infra-red spectroscopy (FTIR)

1 May 2015: 14:00 – 16:00 Tutorial 7 Spectroscopy
Week 9: Mass Spectrometry I

6 May 2015: 12:00 – 14:00 Lecture 8 Introduction to mass spectrometry

• Isotopes
• Types of mass spectrometer
• Trace element analysis by ICP-MS
• Isotope ratio measurement
• Basics of ICP-MS
• The ICP as a source of ions
• Quadrupole mass analyser
• Detecting and counting ions

8 May 2015: 14:00 – 16:00 Tutorial 8 LAM-ICPMS – trace element analysis practical sessions (times to be advised)

Week 10: Mass Spectrometry II

13 May 2015: 12:00 – 14:00 Lecture 9 Mineral analysis II – trace elements and isotope ratios

• Laser ablation ICP-MS
• Types of laser
• Ablation processes
• Calibration and quantification
• Time-resolved analysis

15 May 2015: 14:00 – 16:00 Tutorial 9 ICP-MS data reduction and quality

Week 11: Mass Spectrometry III

20 May 2015: 12:00 – 14:00 Lecture 10 Isotope geochemistry – Multi-collector ICP-MS

• Radiogenic and stable isotope systems
• Isotope ratio measurement
Learning and Teaching Activities

Tutorials
Weekly tutorial workshops will be held to review lecture content and undertake exercises to develop skills in analytical geochemistry and generic skills in problem solving, numeracy, data synthesis, project management and communication.

Instrument Practicals
The practical sessions will involve the use of instruments in the Geochemical Analysis Unit. Basic training will be given in instrument operation to enable you to undertake a small research project. The main aims of the project are to develop an analytical strategy to solve the problem presented to you and to gain experience preparing a report detailing the analytical method, data collection, data processing and data presentation.

Seminar
The theme of the seminar day is “Recent Advances in Analytical Geochemistry”. A list of topics will be provided in week 2 and you will choose a topic based on one of the instrument techniques covered in the course. Your brief will be to prepare a brief overview of the advances in the

22 May 2015: 14:00 – 16:00 Tutorial 10 U-Pb zircon – data reduction and quality

Week 12: Communicating Your Results – Report and Thesis Preparation
27 May 2015: 12:00 – 14:00 Workshop “Analytical Methods” in your thesis or manuscript

29 May 2015: 14:00 – 16:00 Seminars New Frontiers In Geochemical Analysis
“Developments in Analytical Methods”

Week 13: Review and In-class Assessment
3 June 2015: 12:00 – 14:00 Assessment In-class test

Learning and Teaching Activities

Tutorials
Weekly tutorial workshops will be held to review lecture content and undertake exercises to develop skills in analytical geochemistry and generic skills in problem solving, numeracy, data synthesis, project management and communication.

Instrument Practicals
The practical sessions will involve the use of instruments in the Geochemical Analysis Unit. Basic training will be given in instrument operation to enable you to undertake a small research project. The main aims of the project are to develop an analytical strategy to solve the problem presented to you and to gain experience preparing a report detailing the analytical method, data collection, data processing and data presentation.

Seminar
The theme of the seminar day is “Recent Advances in Analytical Geochemistry”. A list of topics will be provided in week 2 and you will choose a topic based on one of the instrument techniques covered in the course. Your brief will be to prepare a brief overview of the advances in the

https://unitguides.mq.edu.au/unit_offerings/45085/unit_guide/print
analytical method and its application. Each student will be required to produce a PowerPoint presentation (maximum 5 slides) of your topic and give this as a short seminar. A mark will be awarded based on content and presentation.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser
Graduate Capabilities
PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

• explain the basic principles of how the XRF, EMP and ICP-MS operate
• be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• compare the results obtained from different analytical techniques
• interpret geochemical data using the knowledge of analytical uncertainty
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assessment tasks

• Assignment 1
PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcomes

- be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
- critically evaluate the quality of data obtained using different analytical methods
- compare the results obtained from different analytical techniques
- interpret geochemical data using the knowledge of analytical uncertainty

Assessment tasks

- Assignment 2
- Assignment 3
- Seminar
- Test 1
- Test 2
- Class Participation

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- explain the basic principles of how the XRF, EMP and ICP-MS operate
- be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• compare the results obtained from different analytical techniques
• interpret geochemical data using the knowledge of analytical uncertainty
• organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assessment tasks

• Assignment 1
• Assignment 2
• Assignment 3
• Seminar
• Test 1
• Test 2
• Class Participation

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

• explain the basic principles of how the XRF, EMP and ICP-MS operate
• be able to select an appropriate analytical technique and set-up an analytical protocol for the geochemical analysis of major and trace elements in geological materials
• acquire the basic skills to operate the EMP and laser ablation ICP-MS
• devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
• develop the knowledge to determine the uncertainty of analytical results
• critically evaluate the quality of data obtained using different analytical methods
• compare the results obtained from different analytical techniques
• interpret geochemical data using the knowledge of analytical uncertainty
organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assessment tasks

- Assignment 1
- Assignment 2
- Assignment 3
- Test 1
- Test 2
- Class Participation

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcomes

- explain the basic principles of how the XRF, EMP and ICP-MS operate
- devise and undertake an analytical program using the appropriate techniques to solve complex petrological problems using geochemistry
- develop the knowledge to determine the uncertainty of analytical results
- organise and present geochemical data in table and graphical format suitable for a report, thesis or publication

Assessment tasks

- Assignment 1
- Assignment 2
- Assignment 3
- Seminar
- Test 1
- Test 2
- Class Participation

PG - Engaged and Responsible, Active and Ethical Citizens

Our postgraduates will be ethically aware and capable of confident transformative action in relation to their professional responsibilities and the wider community. They will have a sense of connectedness with others and country and have a sense of mutual obligation. They will be able
to appreciate the impact of their professional roles for social justice and inclusion related to national and global issues

This graduate capability is supported by:

Learning outcomes

- critically evaluate the quality of data obtained using different analytical methods
- interpret geochemical data using the knowledge of analytical uncertainty

Assessment tasks

- Assignment 2
- Assignment 3
- Class Participation