CBMS732
Protein Discovery and Analysis
S1 Day 2016
Dept of Chemistry & Biomolecular Sciences

Contents

General Information .. 2
Learning Outcomes .. 2
Assessment Tasks .. 3
Delivery and Resources .. 5
Unit Schedule ... 7
Policies and Procedures ... 8
Graduate Capabilities ... 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Bhumika Shah
bhumika.shah@mq.edu.au

Bridget Mabbutt
bridget.mabbutt@mq.edu.au

Credit points
4

Prerequisites
Admission to MRes

Corequisites

Co-badged status

Unit description
This unit outlines molecular principles underlying today's developments in protein science and biomedical research. As well as detailing modern separation technologies, the course addresses structural biology, protein analysis and bioinformatics. Practices common in the biotechnology and pharmaceutical industries to isolate recombinant proteins are emphasized. Analysis methods are introduced in relation to proteomics, genomics and biochemical research. Molecular properties leading to the 3D shape of proteins are detailed and contemporary structure methods outlined.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

- Understand methods used today to isolate and handle proteins
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro
- Develop a sound knowledge of protein structure and how it is encoded in a protein (or gene) sequence
- Gain hands-on practical experience in protein characterisation, and competency with
contemporary web tools
Be able to describe biomolecular forms and architectures
Extract and interpret information from a variety of scientific sources concerning proteins
Develop presentation skills (written, oral) relevant in biomedical science

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final examination</td>
<td>40%</td>
<td>University Examination period</td>
</tr>
<tr>
<td>Laboratory reports</td>
<td>25%</td>
<td>May 6, May 26</td>
</tr>
<tr>
<td>“Pet Protein” case project</td>
<td>25%</td>
<td>April 11, June 2 or June 9</td>
</tr>
<tr>
<td>Class quizzes</td>
<td>10%</td>
<td>periodic</td>
</tr>
</tbody>
</table>

Final examination

Due: University Examination period
Weighting: 40%

This written exam is based on problem-solving exercises.

On successful completion you will be able to:

- Understand methods used today to isolate and handle proteins
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro
- Develop a sound knowledge of protein structure and how it is encoded in a protein (or gene) sequence
- Be able to describe biomolecular forms and architectures

Laboratory reports

Due: May 6, May 26
Weighting: 25%

- For the Protein Chromatography practical (15%), a full report must be made of your experimental data and **discussion and analysis** of your findings. Separate sections for Aims; Methods; Results & Discussion; References must all be included.
- For the Molecular graphics practical (10%), specific reflective tasks will be assigned.
- Bibliography listings must conform to an acceptable style (for guidance, see www.mq.edu.au/on_campus/library/research/referencing), or the reports will be returned.

https://unitguides.mq.edu.au/unit_offerings/55558/unit_guide/print
unmarked for correction and re-submission.

• All written work (assignments and lab reports) are to be submitted via the assignment box located in the FSE student centre (Level 2, MUSE building C7A). Submissions must include a completed and signed cover sheet stapled to the front cover.
• All work must also be submitted in electronic form to the Turnitin program (see iLearn site) by the due date.
• Marks will be deducted for reports handed in after the due date (10% of the total mark/day).
• All marked work will be returned in class, generally within 3 weeks.

On successful completion you will be able to:

• Understand methods used today to isolate and handle proteins
• Gain hands-on practical experience in protein characterisation, and competency with contemporary web tools
• Extract and interpret information from a variety of scientific sources concerning proteins
• Develop presentation skills (written, oral) relevant in biomedical science

“Pet Protein” case project

Due: April 11, June 2 or June 9
Weighting: 25%

• This is assessment of your research and analytical skills, and continues throughout the semester to enhance each topic area.
• Your individual topic for the term “Pet Protein” project will be distributed in the practical session of Week 3. Details are given in the follow pages outlining this case study project.
• As well as presenting analysis of your own case study in written form, you will be required to transmit your understanding of the individual protein to your fellow students via seminars and presentation of your own constructed three-dimensional protein model:
 • Pet Protein A: Purification, written report: due Apr 11 10%
 • Pet Protein B: Structure, model, seminar & questions 15%

• Overall, project work will be assessed according to:
 • the quality and extent of your research
 • the depth and molecular detail of your analysis
 • appropriate use of internet tools
 • the clarity of your communication (verbal and written) and molecular analysis
 • the extent to which your model successfully shows the shape and form of your
protein in three-dimensions
- correct bibliography layout (i.e. alphabetical or numbered listing), with reference to all primary source material (i.e. journal articles, not web-based information).

On successful completion you will be able to:
- Understand methods used today to isolate and handle proteins
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro
- Develop a sound knowledge of protein structure and how it is encoded in a protein (or gene) sequence
- Gain hands-on practical experience in protein characterisation, and competency with contemporary web tools
- Be able to describe biomolecular forms and architectures
- Extract and interpret information from a variety of scientific sources concerning proteins
- Develop presentation skills (written, oral) relevant in biomedical science

Class quizzes
Due: periodic
Weighting: 10%

- Short quizzes will be used to assess your understanding of the course content. These must be completed in the class. They contribute to your final course grading.

On successful completion you will be able to:
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro

Delivery and Resources
Your Classes

- Lectures will be twice weekly: Thursday (9 am) in E6A 102 theatrette and Thursday (1 pm) in W5C 320.
- It is essential that you be available to attend all the classes in person. iLectures are NOT made available during session, as the classroom experience is integral to the subject material of this Unit.
 - Should you miss a specific lecture through illness or misadventure, please contact Dr Shah in iLearn to organise access to the relevant lecture file.
- iLectures will be released for revision purposes from teaching week 12.
The course syllabus is defined by the subject material presented in all lectures (including guest lectures) and practicals, much of which is beyond standard textbooks.

From week 2, tutorials run for all students twice a week. These are structured as problem-solving workshops. You are required to attend for either of the two days. An additional lecture may be delivered in these tutorial hours.

Laboratory Sessions

- **A block practical** is scheduled in the first week of mid-semester break, i.e. from April 11 – 15. You will be allocated a lab group by the Unit convenor and be required to attend for either Mon-Wed (Apr 11-13) or Wed-Fri (Apr 13-15) of the practical week.
- During session, **workshops** (named Practical_1 in the University timetable) are scheduled on several **Thursday afternoons (2-6 pm)**. You will attend for 3 afternoons, according to your allocated laboratory group.
- Attendance is compulsory on the allocated days of class. If you are sick, please consult with the Unit Convenor to ensure all laboratory and project work is completed. Outstanding reports will result in failure of this Unit.
- Please carefully check the location of each laboratory activity, as classes start promptly. **Latecomers may be excluded from class.**

Required and Recommended texts

The textbook of which you are expected to purchase a personal copy is: “Physical Biochemistry: Principles and Applications”, David Sheehan, John Wiley (2nd ed, 2002).

Because of the multidisciplinary nature of this course, you will be expected to read more widely than this, however. The library has an excellent collection of up-to-date reference material to cover the course and laboratory subjects - explore it!!

- Strongly recommended **reference texts** available in the library (short-term loan only):
 - “Introduction to Protein Structure”, Branden & Tooze, Garland, 1999
- Other **general references** that you may find useful are:
Web resources

The Unit will run as an online unit within iLearn (http://learn.mq.edu.au). Within this Unit, you will be introduced to Web-based tools, search engines and graphics software that are commonly used today in protein science. There are many excellent websites, apps and YouTube presentations to show how protein are made and constantly move around.

It is an expectation that you will become familiar with the following sites during the course:

- www.uniprot.org/
 This is a centralised resource for “vital statistics” of known proteins. Try out your Pet Protein here!

 “Proteomics” website hosted by the Swiss Intitute for Bioinformatics. Provides many of the tools for doing your own protein analysis & bioinformatics. Good links, so start here.

- www.ncbi.nlm.nih.gov/pubmed (or just type Pubmed)
 Essential for your literature searches-free and easy searching of all journals- anywhere, anytime.

- www.rcsb.org/pdb (or just type PDB)
 the world’s central protein structure database. Use this to locate structures and view them in 3D.

Technology Requirements

Within this Unit, you will be introduced to Web-based tools, search engines and graphics software that are commonly used today in biomedical science. You will require internet access and a computer for web browsing, preparation of your reports and case study analysis. Your project and laboratory reports will be submitted and circulated via the online Turnitin program.

Your practical reports will require you to carry out minor computational tasks, for which a calculator and access to basic statistical software will be required. We place a large emphasis on correct referencing style in all your reports, and use of the program EndNote is encouraged, but not essential.

The capacity to download and install a simple molecular graphics program will assist you greatly in the Unit. Your model-building assessment task can be carried out with very simple materials; it is not an expectation that expensive art supplies need be purchased.

Unit Schedule

Lectures
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/
Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Services and Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:
Assessment task

- Final examination

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- Understand methods used today to isolate and handle proteins
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro
- Develop a sound knowledge of protein structure and how it is encoded in a protein (or gene) sequence
- Gain hands-on practical experience in protein characterisation, and competency with contemporary web tools

Assessment tasks

- Final examination
- Laboratory reports
- “Pet Protein” case project
- Class quizzes

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Understand methods used today to isolate and handle proteins
- Comprehend the molecular behaviour of proteins (gene products), both in vivo and in vitro
- Develop a sound knowledge of protein structure and how it is encoded in a protein (or gene) sequence
• Gain hands-on practical experience in protein characterisation, and competency with contemporary web tools
• Extract and interpret information from a variety of scientific sources concerning proteins
• Develop presentation skills (written, oral) relevant in biomedical science

Assessment tasks

• Final examination
• Laboratory reports
• “Pet Protein” case project

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

• Gain hands-on practical experience in protein characterisation, and competency with contemporary web tools
• Be able to describe biomolecular forms and architectures
• Extract and interpret information from a variety of scientific sources concerning proteins

Assessment tasks

• Final examination
• Laboratory reports
• “Pet Protein” case project

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcomes

• Be able to describe biomolecular forms and architectures
• Develop presentation skills (written, oral) relevant in biomedical science
Assessment tasks

• Final examination
• Laboratory reports
• “Pet Protein” case project