COMP783
Data Science and Machine Learning
S1 Day 2016
Dept of Computing

Contents

General Information 2
Learning Outcomes 2
Assessment Tasks 3
Delivery and Resources 6
Unit Schedule 6
Policies and Procedures 7
Graduate Capabilities 8
Assessment standards 12

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Convenor, lecturer
Rolf Schwitter
rolf.schwitter@mq.edu.au
Contact via 98509533
E6A333
Friday, 11:00 - 12:00

Lecturer
Diego Molla-Aliod
diego.molla-aliod@mq.edu.au
Contact via 98509531
E6A332
http://web.science.mq.edu.au/~diego/

Credit points
4

Prerequisites
Admission to MRes

Corequisites

Co-badged status

Unit description
This unit introduces the core methods of machine learning and data science for the analysis of both structured and unstructured data. We will learn to use methods for classification, regression, clustering and dimensionality reduction, and will apply them to both numerical and text data. We will also introduce methods for the analysis of "big data" collections, as well as specialised methods for the analysis of sequential data.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
1. Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and
analysed.

2. Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.

3. Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.

4. Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project proposal presentation</td>
<td>10%</td>
<td>Week 6</td>
</tr>
<tr>
<td>Project proposal</td>
<td>10%</td>
<td>Week 7</td>
</tr>
<tr>
<td>Project presentation</td>
<td>10%</td>
<td>Week 13</td>
</tr>
<tr>
<td>Project report</td>
<td>35%</td>
<td>Week 15</td>
</tr>
<tr>
<td>Practical exercises</td>
<td>35%</td>
<td>during the semester</td>
</tr>
</tbody>
</table>

Project proposal presentation

Due: **Week 6**

Weighting: **10%**

This is a 10-minute in-class presentation of the project proposal. It should provide an overview of the project, including the same information as in the project proposal.

This Assessment Task relates to the following Learning Outcomes:

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
- Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.
Project proposal

Due: **Week 7**

Weighting: **10%**

This proposal should provide the following information about the project:

- What is the goal of the project?
- Is there any relevant prior work? (A reference to sections in the textbook might be appropriate)
- What data set(s) will be used for the project, and where will they be obtained from?
- What method(s) will be used to analyse the data? Why are these methods used?

This Assessment Task relates to the following Learning Outcomes:

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
- Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Project presentation

Due: **Week 13**

Weighting: **10%**

This in-class presentation should cover all aspects of the project, including results and conclusion. It should take around 10 minutes.

This Assessment Task relates to the following Learning Outcomes:

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
- Analyse real-world data science problems, identify which methods are appropriate,
organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.

- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Project report

Due: Week 15
Weighting: 35%

This report should describe all aspects of the research project. It should have the format of a short scientific paper (between 5-8 pages long, plus additional pages of data or graphs if required). It should contain the following sections:

- Introduction (including a statement of the problem)
- Related work (if relevant)
- Description of the data (including data source)
- Methods
- Results
- Conclusion

This Assessment Task relates to the following Learning Outcomes:

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
- Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Practical exercises

Due: during the semester
Weighting: 35%

We expect to assign 5 practical exercises during the semester.

This Assessment Task relates to the following Learning Outcomes:
• Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
• Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
• Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.

Delivery and Resources

CLASSES
• Classes: Except for the 2 weeks of student presentations, the first half of each class will have a seminar/lecture format that will introduce the material for the week, while the second half of the class will focus on practical application of the ideas and concepts introduced in the first half of the class.
• Textbook: We will use the following textbooks in this unit. James, Witten, Hastie and Tibshirani (2013) "An Introduction to Statistical Learning with Applications in R" and Wickham, Hadley (2009) "ggplot2: Elegant graphics for data analysis". Both are available as e-books through the MQ library.

UNIT WEBPAGE AND TECHNOLOGY USED AND REQUIRED
• iLearn is going to be used as a main web server for the unit.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to the unit</td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Graphing and plotting</td>
<td>Wickham, chapter 2-5</td>
</tr>
<tr>
<td>Week 3</td>
<td>Introduction to statistical learning</td>
<td>James et al, chapter 2</td>
</tr>
<tr>
<td>Week 4</td>
<td>Linear Regression</td>
<td>James et al, chapter 3</td>
</tr>
<tr>
<td>Week 5</td>
<td>Classification</td>
<td>James et al, chapter 4</td>
</tr>
<tr>
<td>Week 6</td>
<td>Presentations</td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Resampling methods</td>
<td>James et al, chapter 5</td>
</tr>
<tr>
<td>Week 8</td>
<td>Model selection and regularisation</td>
<td>James et al, chapter 6</td>
</tr>
</tbody>
</table>

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](http://mq.edu.au/policy/docs/). Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in [*iLearn*](https://students.mq.edu.au/support/student_conduct/), or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in [*eStudent*](https://students.mq.edu.au/support/student_conduct/). For more information visit ask.mq.edu.au.

Late Submissions

No extensions will be granted. Students who have not submitted the task by the deadline will be awarded a zero mark for the task, except for cases in which an application for special consideration is made and approved.
Student Support
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities
PG - Discipline Knowledge and Skills
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
• Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
• Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment tasks

• Project proposal presentation
• Project proposal
• Project presentation
• Project report
• Practical exercises

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

• Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
• Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
• Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
• Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment tasks

• Project proposal presentation
• Project proposal
• Project presentation
• Project report
PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Derive algorithms to solve machine learning problems based on an understanding of how machine learning and data science problems are mathematically formulated and analysed.
- Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
- Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment tasks

- Project proposal presentation
- Project proposal
- Project presentation
- Project report
- Practical exercises

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:

Learning outcome

- Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.
Assessment tasks

• Project proposal presentation
• Project proposal
• Project presentation
• Project report

PG - Engaged and Responsible, Active and Ethical Citizens

Our postgraduates will be ethically aware and capable of confident transformative action in relation to their professional responsibilities and the wider community. They will have a sense of connectedness with others and country and have a sense of mutual obligation. They will be able to appreciate the impact of their professional roles for social justice and inclusion related to national and global issues.

This graduate capability is supported by:

Learning outcomes

• Create machine learning solutions to data science problems by identifying and applying appropriate algorithms and implementations.
• Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
• Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment tasks

• Project proposal presentation
• Project proposal
• Project presentation
• Project report
• Practical exercises

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcomes

• Create machine learning solutions to data science problems by identifying and applying
appropriate algorithms and implementations.
• Analyse real-world data science problems, identify which methods are appropriate, organise the data appropriately, apply one or more methods, and evaluate the quality of the solution.
• Evaluate one or more approaches to advanced topics in machine learning and data science and report the findings in oral and written form.

Assessment tasks
• Project proposal presentation
• Project proposal
• Project presentation
• Project report
• Practical exercises

Assessment standards
COMP783 will be graded according to the following general descriptions of the letter grades as specified by Macquarie University.

• High Distinction (HD, 85-100): provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application as appropriate to the discipline.

• Distinction (D, 75-84): provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions; and the use of means of communication appropriate to the discipline and the audience.

• Credit (Cr, 65-74): provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; convincing argumentation with appropriate coherent justification; communication of ideas fluently and clearly in terms of the conventions of the discipline.

• Pass (P, 50-64): provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

• Fail (F, 0-49): does not provide evidence of attainment of learning outcomes. There is missing
or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.

The standards of achievement that will be used to assess each of the assessment tasks with respect to the letter grades are as follows.

Learning outcomes 1, 2 and 3:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Can formulate and convey most important points that could be expected on the topic.</td>
</tr>
<tr>
<td>Cr / D</td>
<td>Can formulate and convey clearly all important points that could be expected on the topic.</td>
</tr>
<tr>
<td>HD</td>
<td>As for Cr or D and can come up with novel insightful points on the topic.</td>
</tr>
</tbody>
</table>

Learning Outcomes 4 and 5.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Be able to write a paper or document, or give a presentation, that would be acceptable at a conference.</td>
</tr>
<tr>
<td>Cr / D</td>
<td>Be able to write a paper or document, or give a presentation, that would be well received at a conference.</td>
</tr>
<tr>
<td>HD</td>
<td>Be able to write a paper or document, or give a presentation, that would be well received at a major international conference.</td>
</tr>
</tbody>
</table>

These assessment standards will be used to give a numeric mark out of 100 to each assessment submission during marking. The mark will correspond to a letter grade for that task according to the University guidelines. The final raw mark for the unit will be calculated by combining the marks for all assessment tasks according to the percentage weightings shown in the assessment summary.

We will look at your overall performance on all assessments when determining your final grade. A total raw mark of at least 50% in each of the assessment tasks will be sufficient to pass the unit. Students who do not meet this cut-off will be examined on a case-by-case basis.

On occasion your raw mark for the unit may not be the same as the Standardised Numeric Grade (SNG) which you receive as the final result. Under University Senate guidelines, raw marks may be scaled to ensure that there is a degree of comparability across the university, so that units with the same past performances of their students should achieve similar results.