PSY 354
Clinical and Experimental Neuroscience
S1 Day 2016

Department of Psychology

Contents

General Information 2
Learning Outcomes 2
Assessment Tasks 3
Delivery and Resources 4
Unit Schedule 5
Learning and Teaching Activities 5
Policies and Procedures 6
Graduate Capabilities 7

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit Convenor
Jennifer Cornish
jennifer.cornish@mq.edu.au
Contact via jennifer.cornish@mq.edu.au

Credit points
3

Prerequisites
39cp including (BIOL246 or BIOL247 or BIOL257 or PSY236 or (BBE100 and BBE101))

Corequisites

Co-badge status

Unit description
This unit is designed to provide students with advanced knowledge in the field of neuroscience, from both a clinical and experimental perspective. Students are taught by experts in neuroscience, spanning the Department of Psychology, the Department of Cognitive Science, and the Australian School of Advanced Medicine. Topics are research led and cover neuroanatomy, neurophysiology, neuroimaging, neuropsychopharmacology, emotion, language, attention, memory, sensory and motor systems, together with cardiovascular and respiratory neuroscience. Students are also trained in grant writing skills for future research funding.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Communication and information technology skills: using electronic data bases to search for papers in relevant topics
2. Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
3. Self-awareness skills: identifying and setting targets, time management
4. Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
5. Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
6. Creative thinking: design of research protocol.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant application</td>
<td>30%</td>
<td>May 13th, 2016</td>
</tr>
<tr>
<td>Midterm test</td>
<td>35%</td>
<td>Week 7</td>
</tr>
<tr>
<td>Final exam</td>
<td>35%</td>
<td>Final examination period</td>
</tr>
</tbody>
</table>

Grant application

Due: **May 13th, 2016**
Weighting: **30%**

A three page (approx 1500 word) assignment in the form of a grant application, as instructed during tutorials 1-3, due by Friday May 13, 2016 (30%). It is departmental policy that assignments are set in terms of a specified word limit and specified format:

- Word Limit is 3 pages (approx 1500 word)
- single-spaced
- 12-point font
- Times New Roman font
- Margin of 2.0 cm

Penalty for exceeding word limit: For each 100 words over the page limit a penalty of 5% will be applied (you can have 99 words over before penalty). This means that for this assignment that is worth 30%, a 5% penalty will result in the loss of 5% x 30 = 1.5 marks from your total mark for the assignment. A 5% penalty is also incurred for each day overdue.

See your tutorial guidelines for more information.

This Assessment Task relates to the following Learning Outcomes:
 - Communication and information technology skills: using electronic data bases to search for papers in relevant topics
 - Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
Unit guide PSY 354 Clinical and Experimental Neuroscience

• Self-awareness skills: identifying and setting targets, time management
• Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
• Creative thinking: design of research protocol.

Midterm test
Due: Week 7
Weighting: 35%

A midterm test (multiple 5-choice format) will be held during the scheduled 2 hr lecture in week 7. This paper will examine the information covered in lectures in weeks 1-6.

This Assessment Task relates to the following Learning Outcomes:
• Self-awareness skills: identifying and setting targets, time management
• Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.

Final exam
Due: Final examination period
Weighting: 35%

A final exam (multiple choice format, 5-choice questions) held in the examination period. This paper will examine the information covered in weeks 8-12.

This Assessment Task relates to the following Learning Outcomes:
• Self-awareness skills: identifying and setting targets, time management
• Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.

Delivery and Resources
Classes

Number and length of classes are 1 x 2 hour lecture and 1 x 2 hour tutorial (a total of 5 tutorials – check out below for weeks)
Students enrolled in the External Composite attendance mode (Xc1) can access the iLecture recording of the lecture, but must attend the compulsory tutorial/practical class.

Tutorials

Tutorials will be run on weeks 4, 6, 8, 11, 12 in the Australian Hearing Hub (exceptions will be discussed in class and on iLearn).

Students should attend all tutorial classes or they may be disadvantaged in assessments.

Required and Recommended Texts and/or Materials

Prescribed text: Neuroscience, exploring the brain. Bear, Connors and Paradiso, 3rd or 4th Edition. Copies of this textbook have been placed on reserve in the library.

Prescribed unit materials: additional material will be available in class, on blackboard or via e-readings (library).

Unit Schedule

The unit will be taught weekly through 1 x 2hr lecture. There are also 5 compulsory tutorial classes (2 hrs each) as listed above. The tutorials are run following the below timetable.

Lectures: The lectures are designed to advance the students’ knowledge in key areas of neuroscience. The reading associated with each lecture topic complements and extends the lecture material and students should be self-directed in reading and summarising this material, and integrating it with the lecture material.

Tutorials: Tutorials are designed to enhance the students’ research skills by visits to brain imaging labs, practise in grant writing and analysis, and discussion of contemporary research studies.

Please see your iLearn page for more detail of Lecture topics.

Learning and Teaching Activities

Basic understanding of theories and research in neuroscience

Student’s basic understanding of theories and research in neuroscience is assessed in a midterm exam which contains both multiple choice and short answer questions.

Interpret empirical data

The ability to interpret empirical data in relation to theoretical issues and past research literature is assessed using a grant writing exercise, and discussions during tutorials.
Applied Neuroscience
Student’s basic understanding of theories and research in applied neuroscience is assessed in an end of year exam

Policies and Procedures
Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct
Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results
Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support
Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills
Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.
Unit guide PSY 354 Clinical and Experimental Neuroscience

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/. When using the University’s IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Discipline Specific Knowledge and Skills
Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes
- Communication and information technology skills: using electronic data bases to search for papers in relevant topics
- Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
- Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
- Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
- Creative thinking: design of research protocol.
Assessment tasks

- Grant application
- Midterm test
- Final exam

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Communication and information technology skills: using electronic data bases to search for papers in relevant topics
- Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
- Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
- Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
- Creative thinking: design of research protocol.

Assessment tasks

- Grant application
- Midterm test
- Final exam

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Communication and information technology skills: using electronic data bases to search...
for papers in relevant topics

• Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
• Self-awareness skills: identifying and setting targets, time management
• Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
• Creative thinking: design of research protocol.

Assessment tasks

• Grant application
• Midterm test
• Final exam

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

• Communication and information technology skills: using electronic data bases to search for papers in relevant topics
• Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
• Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
• Creative thinking: design of research protocol.

Assessment tasks

• Grant application
• Midterm test
• Final exam
Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Communication and information technology skills: using electronic data bases to search for papers in relevant topics
- Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
- Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
- Creative thinking: design of research protocol.

Assessment tasks

- Grant application
- Midterm test
- Final exam

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcomes

- Communication and information technology skills: using electronic data bases to search for papers in relevant topics
- Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
- Creative thinking: design of research protocol.
Assessment tasks

- Grant application
- Midterm test
- Final exam

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcomes

- Self-awareness skills: identifying and setting targets, time management
- Creative thinking: design of research protocol.

Assessment tasks

- Grant application
- Midterm test
- Final exam

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Communication and information technology skills: using electronic data bases to search for papers in relevant topics
- Written and oral communication skills: taking part in class discussions, and communication of grant proposal ideas
- Self-awareness skills: identifying and setting targets, time management
- Information skills: formulating arguments, judging the relevance and accuracy of information, comparing different points of view
- Problem solving: comparing alternative interpretations of neuroscience data, formulating
new explanations.
• Creative thinking: design of research protocol.

Assessment tasks
• Grant application
• Midterm test
• Final exam

Commitment to Continuous Learning
Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes
• Self-awareness skills: identifying and setting targets, time management
• Problem solving: comparing alternative interpretations of neuroscience data, formulating new explanations.
• Creative thinking: design of research protocol.

Assessment tasks
• Grant application
• Midterm test
• Final exam