ELEC476
Advanced Electronics Engineering
S1 Day 2016
Dept of Engineering

Contents

General Information 2
Learning Outcomes 3
General Assessment Information 3
Assessment Tasks 3
Delivery and Resources 5
Unit Schedule 5
Learning and Teaching Activities 5
Policies and Procedures 6
Graduate Capabilities 7

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff

Unit Convenor
Oya Sevimli
oya.sevimli@mq.edu.au
Contact via Ph: 9850 9076
E6C 108

Lecturer and Co-convenor
Evgeny Kuxa
evgeny.kuxa@mq.edu.au
Contact via +61 2 9850 4151
E6B Level 1

Credit points
3

Prerequisites
60cp including (ELEC343(P) and ELEC376(P))

Corequisites

Co-badged status

Unit description
This unit integrates prior learning in a specialist area of engineering with problem solving, emerging technology and aspects of engineering application, technical reporting and self-management to prepare students to work at a professional capacity. The unit aims to address the application of fundamental principles and methods at an advanced level in the context of standards and practices, modelling, analysis, design and practical implementation. The unit also develops skills in the critical evaluation of information, software and sources of error and experimental methods. Learning will be achieved using case studies, laboratories, presentations, group work and traditional lecture format. The specific topics will focus on current advances in the area including advanced electronics systems such as PLLs, oscillators, analogue-to-digital conversion, power conversion and control, IC design, radio circuits and systems, RF measurements, and CAD.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates.
Learning Outcomes

1. Understand the relation between the circuit and the system specifications.
2. Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
3. Ability to apply mathematical methods to the analysis of advanced electronic circuits.
4. Ability to engage with the design review process in engineering context.

General Assessment Information

This unit is delivery in three modules (design trade-offs between linearity and noise, amplifier designs and electromagnetic simulations) and supporting practical sessions corresponding to the learning outcomes respectively. Each module will be graded against all four assessment tasks. In order to pass this unit, students must perform satisfactorily in ALL FOUR assessment tasks listed below.

Technical Reports are to be submitted before the deadline. Grading will take into consideration the level of discovery as evidenced by insight presented in the report in terms of critical evolution of the laboratory activity and technical justification of procedure and design.

Design Review will be assessed during scheduled laboratories. Grading will take into consideration the level of participation as evidenced by the simulated results and presentation of challenges and solutions.

Closed-book tests of 40 minutes duration will be conducted in a class as scheduled. The tests will examine understanding of the concepts developed in lecture.

A final two-hour closed-book examination will be conducted during the formal examination period.

Note: Late submissions or absences from tests and laboratories will not be accepted without approved FORMAL notices of “disruption to studies”.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review</td>
<td>15%</td>
<td>TBD</td>
</tr>
<tr>
<td>Technical Report</td>
<td>30%</td>
<td>TBD</td>
</tr>
<tr>
<td>In-class tests</td>
<td>20%</td>
<td>Week 3 and 9 (approximately)</td>
</tr>
<tr>
<td>Final examination</td>
<td>35%</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Design Review

Due: TBD
Design reviews are held once for each module during the lab session. Students present their design status and discuss specifications, challenges and ideas for improvement.

This Assessment Task relates to the following Learning Outcomes:

- Understand the relation between the circuit and the system specifications.
- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to engage with the design review process in engineering context.

Technical Report

Due: TBD
Weighting: 30%

Students are required to produce two formal, in-depth technical reports of their designs prepared during practical sessions.

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to engage with the design review process in engineering context.

In-class tests

Due: Week 3 and 9 (approximately)
Weighting: 20%

Two 40-minutes in-class closed-book tests will be conducted during lectures in order to determine understanding of the prerequisite concepts and the concepts developed in this unit.

This Assessment Task relates to the following Learning Outcomes:

- Understand the relation between the circuit and the system specifications.
- Ability to apply mathematical methods to the analysis of advanced electronic circuits.

Final examination

Due: TBD
Weighting: 35%

A final two-hour closed-book examination will be conducted in the formal examination period to test competency and understanding of the learning outcomes.

This Assessment Task relates to the following Learning Outcomes:
• Understand the relation between the circuit and the system specifications.
• Ability to apply mathematical methods to the analysis of advanced electronic circuits.

Delivery and Resources

Text book

Reference book(s)
A series of engineering journal references will be provided during lectures, which are expected to be sourced through the library

Notes
Lecture and tutorial notes will be provided as required.

Software
Extensive use of AWR's Analog Office software will be made during the semester. It would be advisable for you to register on their website as students. See the unit convenor for a license for your Windows PC.

Required unit materials and/or recommended readings
TBA

Unit Schedule
TBA

Learning and Teaching Activities

Self study
Resources and links that posted on iLearn are expected to be reviewed and studied by all students.

Lecture
Delivery of material not previously seen by the students or material which will be presented in a different context from information provided for directed self study. It will be assumed that information linked on iLearn is studied prior to the lecture. There may be some review material, but this is minimal.
Laboratory

Develop skills based competencies in experimentation with overlap/application to theory and simulation. A significant portion of the laboratory effort is expected to be exploration of the posed problem and of operation and setting up of equipment.

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Grading Policy prior to Session 2 2016 [http://mq.edu.au/policy/docs/grading/policy.html]

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: [https://students.mq.edu.au/support/student_conduct/]

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit [http://students.mq.edu.au/support/]

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.
Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Understand the relation between the circuit and the system specifications.
- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to apply mathematical methods to the analysis of advanced electronic circuits.

Assessment tasks

- Design Review
- Technical Report
- In-class tests
Final examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Understand the relation between the circuit and the system specifications.
- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to apply mathematical methods to the analysis of advanced electronic circuits.
- Ability to engage with the design review process in engineering context.

Assessment tasks

- Design Review
- Technical Report
- In-class tests
- Final examination

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to engage with the design review process in engineering context.

Assessment tasks

- Design Review
- Technical Report
Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

• Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
• Ability to engage with the design review process in engineering context.

Assessment task

• Design Review

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Understand the relation between the circuit and the system specifications.
• Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
• Ability to engage with the design review process in engineering context.

Assessment tasks

• Design Review
• Technical Report
• In-class tests
• Final examination

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.
This graduate capability is supported by:

Learning outcomes

- Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.
- Ability to apply mathematical methods to the analysis of advanced electronic circuits.
- Ability to engage with the design review process in engineering context.

Assessment task

- Technical Report

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation’s historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Assessment task

- Design Review

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:

Assessment task

- Design Review

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:
Learning outcome

• Demonstrate proficiency in designing advanced circuits and systems using EDA simulation and layout tools.

Assessment tasks

• Design Review
• Technical Report