Contents

General Information 2
Learning Outcomes 2
Assessment Tasks 3
Delivery and Resources 6
Unit Schedule 7
Learning and Teaching Activities 7
Policies and Procedures 8
Graduate Capabilities 9
Extra Requirements 16
General Information

Unit convenor and teaching staff
Convenor/Lecturer
Christopher Gordon
chris.gordon@mq.edu.au
AHH 2.6, Level 2

Lecturer
Xuan Duong
xuan.duong@mq.edu.au
Contact via xuan.duong@mq.edu.au
AHH 2.6, Level 2

Xuan Duong
xuan.duong@mq.edu.au

Credit points
3

Prerequisites

Corequisites

Co-badged status

Unit description
This unit is an elementary unit designed for Engineering, Mathematics and Physics students whose mathematics background has not met the recommended standard for students entering these programs. The unit provides a basic introduction to the ideas and techniques of differentiation and integration which are pervasive in the theoretical models that underpin most areas of science, engineering, economics and technology. The unit also has a strong focus on developing the algebraic skills and techniques commonly associated with the application of these ideas. Students who have not studied mathematics for several years should consult the Learning Centre for Numeracy Skills regarding refresher courses.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Develop a good understanding and demonstrate knowledge of the basic concepts of
elementary algebra, and calculus in one variable.

2. Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.

3. Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.

4. Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.

5. Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.

6. Be able to work effectively, responsibly and safely in an individual or team context.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three assignments</td>
<td>20%</td>
<td>See iLearn</td>
</tr>
<tr>
<td>Test</td>
<td>15%</td>
<td>See iLearn</td>
</tr>
<tr>
<td>Tutorial participation</td>
<td>10%</td>
<td>weekly</td>
</tr>
<tr>
<td>Final examination</td>
<td>45%</td>
<td>University Examination Period</td>
</tr>
<tr>
<td>Video</td>
<td>10%</td>
<td>See iLearn</td>
</tr>
</tbody>
</table>

Three assignments

Due: See iLearn
Weighting: 20%

Assignments

This Assessment Task relates to the following Learning Outcomes:

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
• Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
• Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
• Be able to work effectively, responsibly and safely in an individual or team context.

Test
Due: See iLearn
Weighting: 15%
Test in tutorial

This Assessment Task relates to the following Learning Outcomes:
• Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
• Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
• Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
• Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
• Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
• Be able to work effectively, responsibly and safely in an individual or team context.

Tutorial participation
Due: weekly
Weighting: 10%

Recorded tutorial attendance and marked tutorial questions. Only students who attend the whole tutorial session can submit tutorial work and receive marks for the tutorial assessment. The best 8 marks during the unit will contribute to 10% of the grade for the unit.

This Assessment Task relates to the following Learning Outcomes:
• Develop a good understanding and demonstrate knowledge of the basic concepts of
elementary algebra, and calculus in one variable.

- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
- Be able to work effectively, responsibly and safely in an individual or team context.

Final examination

Due: University Examination Period
Weighting: 45%

Supervised task which assesses material from week 1 to week 13.

This Assessment Task relates to the following Learning Outcomes:

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
- Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
- Be able to work effectively, responsibly and safely in an individual or team context.

Video

Due: See iLearn
Weighting: 10%

Group assignment where a vodcast is created.
This Assessment Task relates to the following Learning Outcomes:

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to work effectively, responsibly and safely in an individual or team context.

Delivery and Resources

Recommended Textbook

Other resources

Classes

Lectures: Four hours per week (2 hours in the calculus stream, and 2 hours in the algebra stream).

Tutorials: you should attend one 2 hour tutorial each week.

Workshops: available for students wanting to see more examples and ask further questions. Attendance is strongly recommended.

Additional resources

- *Precalculus: mathematics for calculus*, Stewart, Redlin and Watson; any edition
- **Numeracy Centre notes** on introductory concepts and techniques that are assumed knowledge for MATH130. These notes also cover some of the material in MATH130. Students who have not studied maths for several years, or who did HSC General Mathematics always find these notes helpful.

Technology Used and Required

Students are expected to have access to an internet enabled computer with a web browser and Adobe Reader software. Several areas of the university provide wireless access for portable computers. There are computers for student use in the Library and in the Numeracy Centre (C5A 255).
Difficulties with your home computer or internet connection do not constitute a reasonable excuse for lateness of, or failure to submit, assessment tasks.

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Algebra</th>
<th>Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modelling</td>
<td>Lines</td>
</tr>
<tr>
<td>2</td>
<td>Algebraic Techniques</td>
<td>Functions</td>
</tr>
<tr>
<td>3</td>
<td>Percentages, Proportionality</td>
<td>Introduction to the derivative</td>
</tr>
<tr>
<td>4</td>
<td>Quadratics</td>
<td>Derivative: meaning, definition, graphical interpretation</td>
</tr>
<tr>
<td>5</td>
<td>Exponentials</td>
<td>Derivative: calculation, rules</td>
</tr>
<tr>
<td>6</td>
<td>Logarithms</td>
<td>Derivative: rules</td>
</tr>
<tr>
<td>7</td>
<td>Trigonometry</td>
<td>Derivative: second derivative</td>
</tr>
<tr>
<td>8</td>
<td>Trigonometry</td>
<td>Derivative: sketching</td>
</tr>
<tr>
<td>9</td>
<td>Polynomials</td>
<td>Integration: accumulated change, summing</td>
</tr>
<tr>
<td>10</td>
<td>Polynomials</td>
<td>Integration: definition, signed area, numerical integration</td>
</tr>
<tr>
<td>11</td>
<td>Inequalities</td>
<td>Integration: fundamental theorem of calculus, antiderivatives</td>
</tr>
<tr>
<td>12</td>
<td>Sequences and Series</td>
<td>Integration: antiderivatives, substitution</td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
<td>Revision</td>
</tr>
</tbody>
</table>

Learning and Teaching Activities

Lectures
4 one hour lectures per week

Tutorial
1 two hour tutorial per week

Workshop
1 one hour workshop session per week (optional)
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Late Assignments

No extensions will be granted. Students who have not submitted the task prior to the deadline will be awarded a mark of 0 for the task, except for cases in which an application for special consideration is made and approved.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.
Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and
algebra.

- Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

- Three assignments
- Test
- Tutorial participation
- Final examination
- Video

Learning and teaching activities

- 4 one hour lectures per week
- 1 two hour tutorial per week
- 1 one hour workshop session per week (optional)

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

- Three assignments
- Test
Learning and teaching activities

• 1 two hour tutorial per week

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

• Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
• Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
• Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

• Three assignments
• Test
• Final examination
• Video

Learning and teaching activities

• 1 two hour tutorial per week

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:
Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
- Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.

Assessment tasks

- Final examination
- Video

Learning and teaching activities

- 4 one hour lectures per week
- 1 two hour tutorial per week

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form.
form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.

- Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

- Three assignments
- Test
- Tutorial participation
- Final examination
- Video

Learning and teaching activities

- 4 one hour lectures per week
- 1 two hour tutorial per week
- 1 one hour workshop session per week (optional)

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of elementary algebra, and calculus in one variable.
- Be able to apply the principles, concepts, and techniques learned in this unit to solve practical and abstract problems.
- Demonstrate appropriate interpretation of information communicated in mathematical form. Be able to understand what is being said in mathematical expressions and be able to formulate ideas using mathematical form in the context of introductory calculus and algebra.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

- Three assignments
Learning and teaching activities

- 4 one hour lectures per week
- 1 two hour tutorial per week
- 1 one hour workshop session per week (optional)

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation’s historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcomes

- Demonstrate the ability to construct logical, clearly presented and justified mathematical arguments on elementary level especially in the context basic calculus and algebra.
- Ethical application of mathematical approaches to solving problems and appropriately reference and acknowledge sources in a mathematical context.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment tasks

- Three assignments
- Test
- Final examination
- Video

Learning and teaching activities

- 4 one hour lectures per week
- 1 two hour tutorial per week
- 1 one hour workshop session per week (optional)

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work
with others as a leader and a team player; to have a sense of connectedness with others and
country; and to have a sense of mutual obligation. Our graduates should be informed and active
participants in moving society towards sustainability.

This graduate capability is supported by:

Learning outcomes

- Ethical application of mathematical approaches to solving problems and appropriately
 reference and acknowledge sources in a mathematical context.
- Be able to work effectively, responsibly and safely in an individual or team context.

Assessment task

- Final examination

Learning and teaching activity

- 4 one hour lectures per week
- 1 two hour tutorial per week
- 1 one hour workshop session per week (optional)

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue
knowledge for its own sake. They will continue to pursue learning in their careers and as they
participate in the world. They will be capable of reflecting on their experiences and relationships
with others and the environment, learning from them, and growing - personally, professionally
and socially.

This graduate capability is supported by:

Learning outcomes

- Develop a good understanding and demonstrate knowledge of the basic concepts of
 elementary algebra, and calculus in one variable.
- Demonstrate the ability to construct logical, clearly presented and justified mathematical
 arguments on elementary level especially in the context basic calculus and algebra.
- Demonstrate appropriate interpretation of information communicated in mathematical
 form. Be able to understand what is being said in mathematical expressions and be able
 to formulate ideas using mathematical form in the context of introductory calculus and
 algebra.

Assessment tasks

- Final examination
- Video
Learning and teaching activities

- 4 one hour lectures per week
- 1 one hour workshop session per week (optional)

Extra Requirements

Satisfactory performance on supervised assessment tasks, such as the final exam, is necessary to pass this unit. If there is a significant difference between a student's marks on supervised assessment tasks and on unsupervised assessment tasks the final grade may be adjusted to reflect more appropriately that student's understanding of the unit content.