BIOL379
Reef Evolution and Dynamics
S1 External 2016
Dept of Biological Sciences

Contents
General Information .. 2
Learning Outcomes .. 3
Assessment Tasks .. 3
Delivery and Resources .. 6
Unit Schedule .. 7
Policies and Procedures ... 8
Graduate Capabilities ... 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

| Unit convenor and teaching staff | Sarah Collison
sarah.collison@mq.edu.au
Contact via sarah.collison@mq.edu.au
E8A 103 |
|---------------------------------|---|
| Unit Convenor | Matthew Kosnik
matthew.kosnik@mq.edu.au
Contact via matthew.kosnik@mq.edu.au
E8A-330 |
Credit points	3
Prerequisites	39cp including ((BIOL261 or BIOL263) and (BIOL208 or BIOL227 or BIOL235 or BIOL262 or GEOS206)) or (6cp from BIOL units at 200 level and 6cp from GEOS units at 200 level)
Corequisites	
Co-badged status	
Unit description	Modern coral reefs are dynamic systems consisting of a complicated interplay of biological, chemical and geological processes that presently cover approximately 600,000 square kilometres of the Earth's surface. The aims of this unit are to provide each student with first-hand experience of modern reefs as dynamic systems by using quantitative and qualitative scientific methods and techniques to explore a diverse range of multidisciplinary topics including: reef formation and structure; reef zonation; carbonate sedimentology; biodiversity; ecology; taxonomy; taphonomy; symbiosis; recruitment; bioturbation and bio-erosion; human impacts on reef systems; global warming; and the evolution and importance of reef formation in the geological record. This latter point is a particular focus – students learn about the changes associated with the evolution of reefs through geological time. The study of ancient reefs provides a counterpoint and analogy to the modern reef setting studied in the field. The unit involves a compulsory two day on-campus session and an eight day field excursion to Heron Island Research Station, Capricorn-Bunker Group, Great Barrier Reef (separate excursion fee applies).
Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Explain the interactions between biological, physical, and historical processes that produce modern reef environments.
2. Explain and distinguish the key mechanisms and characteristics governing the preservation of living communities as fossil assemblages.
3. Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
4. Apply and critique field methods in the context of different research goals.
5. Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Campus Practical</td>
<td>4%</td>
<td>2016.Mar.12&13</td>
</tr>
<tr>
<td>Pre-trip online activities</td>
<td>12%</td>
<td>2016.Mar.07 - 2016.Apr.05</td>
</tr>
<tr>
<td>Fieldwork data and analysis</td>
<td>23%</td>
<td>2016.Apr.11 - 2015.Apr.17</td>
</tr>
<tr>
<td>Laboratory exam</td>
<td>25%</td>
<td>2016.Apr.16</td>
</tr>
<tr>
<td>Project report reviews</td>
<td>11%</td>
<td>2015.May.24</td>
</tr>
</tbody>
</table>

On Campus Practical

Due: 2016.Mar.12&13
Weighting: 4%

Reefs are biogenic physical structures with a rich and diverse geologic history. Fossil specimens and other material will be provided during the on campus session. Students will use these materials to investigate the Phanerozoic history of reefs including changes in taxonomic composition, and the membership of key functional groups through time. The focus of this assessment is the Phanerozoic history of reefs and their associated organisms. An online assessment (accessed via iLearn) will be completed by the students before leaving the on
This Assessment Task relates to the following Learning Outcomes:

- Explain the interactions between biological, physical, and historical processes that produce modern reef environments.
- Explain and distinguish the key mechanisms and characteristics governing the preservation of living communities as fossil assemblages.
- Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
- Apply and critique field methods in the context of different research goals.

Pre-trip online activities

Due: 2016.Mar.07 - 2016.Apr.05
Weighting: 12%

A variety of learning resources will be available via iLearn. The goal of these activities is to refresh the knowledge that will be assumed once we get to Heron Island. The assessment will be done via iLearn quizzes and activities on an ongoing basis between the start of the session and the field trip.

Fieldwork data and analysis

Due: 2016.Apr.11 - 2015.Apr.17
Weighting: 23%

While at Heron Island we will undertake a variety of laboratory workshops and fieldwork. Each of these activities will generate data and students will be required to report data, reflect on the methods used to collect the data, and discuss analyses of the data. Detailed requirements will be provided on an activity by activity basis while in the field. Deadlines will also be set for each activity. All of this work will be completed and submitted while at Heron Island.

This Assessment Task relates to the following Learning Outcomes:
• Explain and distinguish the key mechanisms and characteristics governing the preservation of living communities as fossil assemblages.
• Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
• Apply and critique field methods in the context of different research goals.

Laboratory exam
Due: 2016.Apr.16
Weighting: 25%

On the second to last day of the trip students will undertake a comprehensive 2 hour laboratory exam. This comprehensive exam will have written and practical components. The written part will include short answer and essay type questions. More detailed information about the exam will be provided at Heron Island.

This Assessment Task relates to the following Learning Outcomes:
• Explain the interactions between biological, physical, and historical processes that produce modern reef environments.
• Explain and distinguish the key mechanisms and characteristics governing the preservation of living communities as fossil assemblages.
• Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
• Apply and critique field methods in the context of different research goals.

Independent project report
Weighting: 25%

Students will complete the fieldwork and data collection for an independent project while at Heron Island. Students are given substantial freedom to choose the topic for this work, although Health and Safety, Animal Ethics, GBR Marine Park Authority requirements must be met. Students are encouraged to start thinking about the project before going to Heron. Groups of 2 – 4 students are expected to propose a project to the course staff within the first 3 days of the field trip. Groups will then have time to collect the required data and perform preliminary analyses before leaving Heron. While the data collection is a group activity, each student is expected to write their own report entirely in their own words and without the input from other group members. Reports will be written following the instructions to authors for the journal Coral Reefs. Those reports are due by noon the 10th of May. Each student will be assigned two reports from other students of the class to review. Each report will receive two reviews, the goal of the review is to provide constructive comments on improving the report. These reviews are due by noon on May 24th. Each student will then revise their report taking into account the constructive feedback they received. Revised reports and a cover letter explaining how the reviews were
helpful / addressed are due by noon on the 7th of June. More detailed information on the marking criteria will be provided at a later date. See the independent project section on iLearn for additional details.

This Assessment Task relates to the following Learning Outcomes:

- Explain the interactions between biological, physical, and historical processes that produce modern reef environments.
- Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Project report reviews

Due: 2015.May.24
Weighting: 11%

Each student will be assigned two project reports from two other students in the class to review. Each student's report will receive two reviews, the goal of the review is to provide constructive comments on improving the reports. See the independent project section on iLearn for additional details.

This Assessment Task relates to the following Learning Outcomes:

- Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Delivery and Resources

Access to iLearn is required to complete assessment tasks and to access unit resources.

Attendance at the on campus session (March 12th & 13th) and for the entirety to the field trip (April 10th - 17th) is compulsory. Students who fail to attend the on campus session or to pay the required fee by the due date will forfeit their place in the unit. Any individual anticipating difficulties meeting a due date must discuss and make arrangements with the unit convener well in advance of the due date.

Students must submit all assessment tasks to receive a passing mark for the unit.

While data collection and analyses will often be conducted in groups, students are expected to use their own words in all written assignments. All collaborative aspects of work will be acknowledged as instructed in the assignment instructions. Penalties for plagiarism range from a loss of marks to awarding of a zero depending on the level of plagiarism and reporting to Faculty disciplinary committee.
Field trip logistics

During the field trip students are expected to act in an exemplary manner and follow staff instructions. This is especially true of any requirement imposed by the Heron Island Research Station, Macquarie University Health and Safety, Animal Ethics, and/or the Great Barrier Reef Marine Park Authority. Any student who fails to behave as expected will be asked to leave the field trip at their own expense and will be unable to satisfactorily complete the unit.

The fieldtrip fee is $850 and must be paid to the University Cashier by March 24th. See iLearn for the payment form. Any student who is unable to pay by this date or for whom the fee is prohibitive should contact the unit convener as extensions or assistance may be possible.

Students are responsible for their own travel arrangements and costs to and from the Gladstone Marina. The ferry departs the Gladstone Marina at approximately 13:00 on the 10th of April and returns to the marina at approximately 13:00 on the 17th of April. See: http://www.heronisland.com/Getting-Here.aspx for additional information.

The field activities are physically strenuous and we will be preparing and eating communal meals. Students must inform the unit staff of any dietary restrictions, food allergies or potential medical issues at (or before) the on campus session so that arrangements can be made (see iLearn). Contact the unit convener and/or technical officer with any concerns.

Additional information on what to bring is provided at the on campus session and via iLearn, but basic field attire is required and students are strongly encouraged to bring snorkeling equipment.

Unit Schedule

Weeks 1 - 5:

- Complete tasks posted on iLearn. Don’t forget to complete the quizzes. They are designed to make sure that you have all the background that will be assumed once you get to Heron! Prepare for on campus session.
- The on campus session is the second weekend of the session (March 12th & 13th, 9:00 - 17:00, E5A-220).
- The field trip fee is due by Thursday of week 5 (March 24th).
- Begin thinking about potential topics for your independent project. If you want to do a project requiring special equipment it must be sorted out by March 24th - please discuss your needs with the course convener and tech staff with plenty of time.

Week 6:

- Prepare and pack for Heron.

Heron Island Fieldtrip (first week of mid semester break):

- A detailed schedule will be provided via iLearn.
- See the fieldtrip logistics section of this unit guide and iLearn for more information.
You are expected to be at the Gladstone Marina to catch the Ferry departing at ~13:00 on April 10th.

You will return on the Ferry arriving at ~13:00 on April 17th.

Weeks 7 & 8:

- Write up independent project report (see iLearn and additional instructions provided).

Weeks 9 & 10:

- Complete peer review of project reports supplied to you (see iLearn and additional instructions provided).

Weeks 11 & 12:

- Revise your project report based on peer review (see iLearn and additional instructions provided).

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/
Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.
This graduate capability is supported by:

Learning outcomes

- Explain the interactions between biological, physical, and historical processes that produce modern reef environments.
- Explain and distinguish the key mechanisms and characteristics governing the preservation of living communities as fossil assemblages.
- Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
- Apply and critique field methods in the context of different research goals.
- Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Assessment tasks

- On Campus Practical
- Pre-trip online activities
- Fieldwork data and analysis
- Laboratory exam
- Independent project report
- Project report reviews

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
- Apply and critique field methods in the context of different research goals.
- Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.
Assessment tasks

• On Campus Practical
• Pre-trip online activities
• Fieldwork data and analysis
• Independent project report
• Project report reviews

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcome

• Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Assessment tasks

• Fieldwork data and analysis
• Independent project report
• Project report reviews

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcome

• Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.
Assessment tasks

• Fieldwork data and analysis
• Independent project report
• Project report reviews

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

• Reconstruct past communities using fossil assemblages. Evaluate the assumptions and uncertainties inherent in your reconstructions.
• Apply and critique field methods in the context of different research goals.
• Design and implement an independent scientific project, analyze and evaluate the results in the context of the relevant scientific literature, and communicate those results to a scientific audience.

Assessment tasks

• On Campus Practical
• Fieldwork data and analysis
• Laboratory exam
• Independent project report
• Project report reviews

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Assessment task

• Independent project report