AFIN270
Stochastic Methods in Applied Finance
S1 Evening 2016
Dept of Applied Finance and Actuarial Studies

Contents

General Information .. 2
Learning Outcomes .. 2
General Assessment Information 3
Assessment Tasks .. 3
Delivery and Resources ... 5
Unit Schedule ... 5
Policies and Procedures ... 6
Graduate Capabilities ... 7
Changes from Previous Offering 9
Changes since First Published 9

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit convenor and lecturer
Jackie Li
jackie.li@mq.edu.au
Contact via Email
E4A 610
Thursdays 4pm–6pm during teaching weeks or by appointment

Credit points
3

Prerequisites
(15cp including (ACST101 and (AFIN100 or AFIN102 or ACST152) and (STAT150 or STAT170 or STAT171))) or ACST252

Corequisites

Co-badged status

Unit description
The applied finance discipline has become more reliant on quantitative analysis in recent years. Increasingly, models employed by practitioners and researchers are based on assumptions about the stochastic properties of financial time series. This unit provides students with a more detailed insight and understanding of the valuation models introduced in earlier units and includes extensive use of Excel. The unit addresses a number of topics, within which theoretical models are developed and then explored further using Excel. These topics include random walks, martingales, Ito calculus, and arbitrage.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Use a range of probability distributions to model different financial variables
2. Assess the dependence between financial variables with suitable statistical tools
3. Apply regression models and time series models to various financial time series
4. Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
5. Perform mathematical computations on Excel spreadsheets for practical problems
General Assessment Information

A Standardised Numerical Grade (SNG) gives you an indication of how you have performed within the band for your descriptive grade. The SNG is not a mark, and you may not be able to work it out based on your raw examination and other assessment marks. Nor are you able to determine you are ‘one mark away’ from a different grade.

It is the responsibility of students to view their marks for each within session assessment on iLearn within 20 working days of posting. If there are any discrepancies, students must contact the unit convenor immediately. Failure to do so will mean that queries received after the release of final results regarding assessment marks (not including the final exam mark) will not be addressed.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed Coursework</td>
<td>20%</td>
<td>Throughout</td>
</tr>
<tr>
<td>Class Test</td>
<td>20%</td>
<td>Week 7</td>
</tr>
<tr>
<td>Final Exam</td>
<td>60%</td>
<td>Exam Period</td>
</tr>
</tbody>
</table>

Assessed Coursework

Due: **Throughout**

Weighting: **20%**

Weekly questions should be attempted and the work will be collected in four (4) of the tutorials / lectures randomly throughout the semester, without prior notice. Marks will be granted for accuracy and clarity of the work submitted.

No extensions will be granted. Students who have not submitted the task prior to the deadline will be awarded a mark of zero (0) for the task, except for cases in which an application for disruption of studies is made and approved.

This Assessment Task relates to the following Learning Outcomes:

- Use a range of probability distributions to model different financial variables
- Assess the dependence between financial variables with suitable statistical tools
- Apply regression models and time series models to various financial time series
- Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
- Perform mathematical computations on Excel spreadsheets for practical problems
Class Test

Due: Week 7
Weighting: 20%

The class test covers the Excel applications in Week 1 to Week 6. Students will have one (1) hour to complete the test and submit their spreadsheets. Use of the Internet during the test is not permitted. Marks will be granted for accuracy and clarity of the work submitted.

You are permitted one (1) A4 page of paper containing reference material printed on both sides. The material may be handwritten or typed. The page will not be returned to you at the end of the class test.

Students who do not attend the class test will be awarded a mark of zero (0) for the test, except for cases in which an application for disruption of studies is made and approved.

This Assessment Task relates to the following Learning Outcomes:

• Use a range of probability distributions to model different financial variables
• Assess the dependence between financial variables with suitable statistical tools
• Perform mathematical computations on Excel spreadsheets for practical problems

Final Exam

Due: Exam Period
Weighting: 60%

A three-hour (3) written exam will be held during the normal university exam period. Questions will cover the entire unit. Marks will be granted for accuracy and clarity of the work shown.

To be eligible to pass this unit, a pass is required in the final exam.

You are permitted one (1) A4 page of paper containing reference material printed on both sides. The material may be handwritten or typed. The page will not be returned to you at the end of the final exam. Non-programmable calculators with no text-retrieval capacity are permitted.

Students who do not attend the final exam will be awarded a mark of zero (0) for the exam, except for cases in which an application for disruption of studies is made and approved.
This Assessment Task relates to the following Learning Outcomes:

• Use a range of probability distributions to model different financial variables
• Assess the dependence between financial variables with suitable statistical tools
• Apply regression models and time series models to various financial time series
• Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
• Perform mathematical computations on Excel spreadsheets for practical problems

Delivery and Resources

The timetables for classes can be found on the University website at:

timetables.mq.edu.au/2016/

Tutorials will commence in Week 2.

The required textbook is:

Lecture handouts are available for download from iLearn before lectures. Students are expected to read the handout and the corresponding textbook chapter(s) before each lecture.

Students will be required to use iLearn, Excel, PDF, and a non-programmable calculator.

Unit Schedule

Week 1 29 Feb Measures of Location and Spread
Week 2 7 Mar Discrete Probability Distributions
Week 3 14 Mar Basic Option Pricing Techniques
Week 4 21 Mar Continuous Probability Distributions
Week 5 28 Mar Modelling Extreme Events
Week 6 4 Apr Joint Probability Distributions
Week 7 25 Apr Copulas and Dependence Measures
Week 8 2 May Bayesian Analysis
Week 9 9 May Regression Models
Week 10 16 May Model Diagnostics
Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Supplementary Exams

Further information regarding supplementary exams, including dates, is available here http://www.businessandeconomics.mq.edu.au/current_students/undergraduate/how_do_i/disruption_to_studies

Student Support

Macquarie University provides a range of support services for students. For details, visit http://stu
Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcome
- Perform mathematical computations on Excel spreadsheets for practical problems

Assessment task
- Class Test

Problem Solving and Research Capability
Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in
order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Use a range of probability distributions to model different financial variables
- Assess the dependence between financial variables with suitable statistical tools
- Apply regression models and time series models to various financial time series
- Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
- Perform mathematical computations on Excel spreadsheets for practical problems

Assessment tasks

- Assessed Coursework
- Class Test
- Final Exam

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Use a range of probability distributions to model different financial variables
- Assess the dependence between financial variables with suitable statistical tools
- Apply regression models and time series models to various financial time series
- Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
- Perform mathematical computations on Excel spreadsheets for practical problems

Assessment tasks

- Assessed Coursework
- Class Test
- Final Exam

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate
and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Use a range of probability distributions to model different financial variables
- Assess the dependence between financial variables with suitable statistical tools
- Apply regression models and time series models to various financial time series
- Understand the basic concepts of no-arbitrage principle and risk-neutral pricing
- Perform mathematical computations on Excel spreadsheets for practical problems

Assessment tasks

- Assessed Coursework
- Class Test
- Final Exam

Changes from Previous Offering

The overall syllabus has been revised. A required textbook has been added.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/03/2016</td>
<td>Collection of assessed coursework has been changed from in tutorial to either in lecture or tutorial.</td>
</tr>
</tbody>
</table>