General Information

Unit convenor and teaching staff
Convener
Hazel Jenkins
hazel.jenkins@mq.edu.au
Contact via hazel.jenkins@mq.edu.au
C5C 347
Tuesday 9am-12pm, Wednesday 1-4pm

Lecturer
Rich Mildren
rich.mildren@mq.edu.au
Contact via rich.mildren@mq.edu.au

Tutor
Adam Joyce
adam.joyce@mq.edu.au
Contact via adam.joyce@mq.edu.au

Lecturer
Tony Buxton
anthony.buxton@mq.edu.au
Contact via anthony.buxton@mq.edu.au

Lecturer
Douglas Little
douglas.little@mq.edu.au

Credit points
3

Prerequisites
39cp at 100 level or above including 12cp at 200 level

Corequisites

Co-badged status
CHIR606
Unit description
This unit is conducted to develop students' knowledge in the underlying physical principles of medical radiation science. The unit is presented in three distinct modules: - Module 1 is the study of Radiation Physics, its principles and current technology of imaging equipment. - Module 2 is the study of the principles and practice of image production and image processing techniques. - Module 3 describes the biological effects of radiation as well as current radiation protection techniques.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

- Summarise the working principles of x-ray tubes and how these influence their operation and performance
- Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety
- Critically appraise the principles of radiographic image production and processing
- Contrast the generation and use of advanced imaging modalities
- Explain the biological effects of radiation
- Summarise radiation protection in relation to radiography

General Assessment Information

LABORATORIES
You will be scheduled to attend 3 laboratory sessions throughout the semester. Missed session must be made up prior to week 13. A timetable will be released early in the semester to inform you which laboratory sessions you should attend. Please email the lab manager, Adam Joyce adam.joyce@mq.edu.au if you have concerns regarding your laboratory session time or to arrange making-up missed sessions.

ASSIGNMENTS
Submission of assignments will be through ilearn unless otherwise indicated.

It is expected that the academic honesty policy (http://mq.edu.au/policy/docs/academic_honesty/policy.html) be followed at all times. Breaches of the academic honesty policy may result in disciplinary procedures for the involved student.

Assignment word limits should be adhered to. A deduction of 10% of the final grade will be applied for every 10% increase in word count above the set limit. Word count does not include reference lists.

Late submission of assignments will result in a grade deduction of 10% per day late. Submissions handed in more than 1 week after the due date will not be assessed.

Extensions to assessment due dates may be granted under extenuating circumstances. Application for extensions must be made under the disruption to studies policy (http://students.mq.edu.au/student_admin/exams/disruption_to_studies/), applied for through www.ask.mq.edu.au within 5 days of the disruption and prior to the submission date of the assignment. Resubmission of assignments will not be considered under usual circumstances.

THEORY EXAMINATIONS

The University Examination period for Semester 1, 2017 is from June 12th to June 30th 2017. You are expected to present yourself for examination at the time and place designated in the University Examination Timetable. The timetable will be available in Draft form approximately eight weeks before the commencement of the examinations and in Final form approximately four weeks before the commencement of the examinations.

You are advised that it is Macquarie University policy not to set early examinations for individuals or groups of students. You are expected to ensure that you are available until the end of the teaching semester that is the final day of the official examination period.

The only exception to not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these circumstances you may wish to consider applying for disruption to studies. Information about unavoidable disruption and the disruption to studies process is available at http://students.mq.edu.au/student_admin/exams/disruption_to_studies/, applied for through www.ask.mq.edu.au within 5 days of the disruption.

If you attend and complete an examination or assessment you are declaring that you are fit to sit that assessment and disruption from studies will not normally be granted.

Serious and unavoidable disruption: The University classifies a disruption as serious and unavoidable if it:

- could not have reasonably been anticipated, avoided or guarded against by the student; and
- was beyond the student's control; and
- caused substantial disruption to the student's capacity for effective study and/or completion of required work; and
- occurred during an event critical study period and was at least three (3) consecutive days duration, and/or
- prevented completion of a final examination.

Students with a pre-existing disability/health condition or prolonged adverse circumstances may be eligible for ongoing assistance and support. Such support is governed by other policies and
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>15%</td>
<td>No</td>
<td>Friday 31 March 5pm</td>
</tr>
<tr>
<td>Laboratory work</td>
<td>15%</td>
<td>No</td>
<td>Varies for each group</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>20%</td>
<td>No</td>
<td>Friday 5 May 5pm</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
<td>No</td>
<td>University Exam period</td>
</tr>
</tbody>
</table>

Assignment 1
Due: **Friday 31 March 5pm**
Weighting: **15%**

Assignment 1 will be a quiz available and submitted through ilearn. It will cover material from module 1 (radiographic physics); The quiz will be released on ilearn on Friday 17/3/17

On successful completion you will be able to:
- Summarise the working principles of x-ray tubes and how these influence their operation and performance
- Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety

Laboratory work
Due: **Varies for each group**
Weighting: **15%**

3 experiments will be performed across the course of semester starting in week 3 or 4. You will be allocated a group and the timetable of which weeks you are to attend will be posted on ilearn.

If you are granted a supplementary exam via the Disruption to Studies process, you will have to write a supplementary exam in the supplementary exam period. The supplementary exam may be in a different format to the original exam and you will be notified of this when you are granted a supplementary exam. Only your supplementary exam mark will be counted towards your final exam mark.

If you apply for Disruption to Study for your final examination, you must make yourself available for the week of July 24 – 28, 2017. If you are not available at that time, there is no guarantee an additional examination time will be offered. Specific examination dates and times will be determined at a later date.
On successful completion you will be able to:

• Summarise the working principles of x-ray tubes and how these influence their operation and performance

• Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety

Assignment 2

Due: **Friday 5 May 5pm**
Weighting: **20%**

Assignment 2 will be a quiz available and submitted through ilearn. It will cover material from module 2 (radiographic image production). The quiz will be released on ilearn on Friday 7/4/17

On successful completion you will be able to:

• Critically appraise the principles of radiographic image production and processing

Final Examination

Due: **University Exam period**
Weighting: **50%**

The exam will assess material from the whole semester.

A formula sheet will be provided.

Scientific calculators are allowed.

On successful completion you will be able to:

• Summarise the working principles of x-ray tubes and how these influence their operation and performance

• Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety

• Critically appraise the principles of radiographic image production and processing

• Contrast the generation and use of advanced imaging modalities

• Explain the biological effects of radiation

• Summarise radiation protection in relation to radiography

Delivery and Resources

LECTURES

2-hour lectures each week on Friday 10am-12pm in E7BT3 for modules 1-3. These lectures are
also available on ilearn.

LABORATORY SESSIONS

3 x 3-hour practical laboratory's per student as scheduled. You will be divided into separate groups and will attend the appropriate weeks as indicated on the laboratory schedule, available on the unit ilearn page.

iLEARN PAGE

The web page for this unit can be found at: https://ilearn.mq.edu.au and following the links for either Postgraduate or Undergraduate students. There is a combined ilearn page for HLTH304 and CHIR606 students.

REQUIRED TEXTS/MANUALS

HLTH304/CHIR606 Laboratory Notebook 2017 – available from Co-op book store.

REFERENCES

Introduction to Radiologic Technology. - LaVerne Tolley Gurley & William J. Callaway (7th Edition); Mosby St Louis 2011

Unit Schedule

WEEK 1 Rich Mildren
Electricity and magnetism/Explanation of syllabus.

WEEK 2 Rich Mildren

WEEK 3 Rich Mildren
What are X-rays and how are they produced. X-ray interactions.

WEEK 4 Hazel Jenkins
Historical background and the current use of radiography. Image formation. Optical Density and Contrast as related to exposure parameters: milliamperes (mA),time (s), milliampere seconds (mAs), Kilovoltage (kVp), distance (SID or FFD).

WEEK 5 Hazel Jenkins

WEEK 6 Anthony Buxton
Radiographic film. Film processing. Sensitometry & densitometry. Characteristic curve. Intensifying screens – Construction; Spectral matching; Screen speed; Quantum mottle Film/screen cassettes;

WEEK 7 NO LECTURE: PUBLIC HOLIDAY

WEEK 8 Anthony Buxton

WEEK 9 Anthony Buxton

WEEK 10 Anthony Buxton

Special radiographic equipment (Fluoroscopy, CT, MRI).

WEEK 11 Anthony Buxton

Biological effects of radiation. The Law of Bergonne & Tribondeau. Linear energy transfer. Types of cell damage.

WEEK 12 Anthony Buxton

WEEK 13 Anthony Buxton

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.
Graduate Capabilities

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to...
handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Critically appraise the principles of radiographic image production and processing
- Contrast the generation and use of advanced imaging modalities
- Explain the biological effects of radiation
- Summarise radiation protection in relation to radiography

Assessment tasks

- Assignment 2
- Final Examination

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- Critically appraise the principles of radiographic image production and processing
- Summarise radiation protection in relation to radiography

Assessment tasks

- Assignment 2
- Final Examination

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:
Learning outcomes

- Summarise the working principles of x-ray tubes and how these influence their operation and performance
- Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety
- Critically appraise the principles of radiographic image production and processing
- Contrast the generation and use of advanced imaging modalities
- Explain the biological effects of radiation
- Summarise radiation protection in relation to radiography

Assessment tasks

- Assignment 1
- Laboratory work
- Assignment 2
- Final Examination

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Summarise the working principles of x-ray tubes and how these influence their operation and performance
- Identify the properties of x-rays and explain how they interact with matter, and influence image quality and patient safety
- Critically appraise the principles of radiographic image production and processing
- Contrast the generation and use of advanced imaging modalities
- Explain the biological effects of radiation
- Summarise radiation protection in relation to radiography

Assessment tasks

- Assignment 1
- Laboratory work
- Assignment 2
Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Critically appraise the principles of radiographic image production and processing
- Summarise radiation protection in relation to radiography

Assessment tasks

- Assignment 2
- Final Examination

Engaged and Ethical Local and Global citizens

As local citizens our graduates will be aware of indigenous perspectives and of the nation's historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcomes

- Contrast the generation and use of advanced imaging modalities
- Explain the biological effects of radiation
- Summarise radiation protection in relation to radiography

Assessment task

- Final Examination

Socially and Environmentally Active and Responsible

We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:
Learning outcomes

• Contrast the generation and use of advanced imaging modalities
• Explain the biological effects of radiation
• Summarise radiation protection in relation to radiography

Assessment task

• Final Examination

Changes from Previous Offering
No changes from the previous offering have been made

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/02/2017</td>
<td>Lecturer name added Lecture theatre location updated to E7BT3</td>
</tr>
</tbody>
</table>