General Information

Unit convenor and teaching staff
Unit Convenor
Juan Carlos Afonso
juan.afonso@mq.edu.au
Contact via juan.afonso@mq.edu.au
E7A523
Send email to book time

Credit points
3

Prerequisites

Corequisites

Co-badged status

Unit description
Discover how the solid Earth works – investigate the dynamic link between plate tectonics and Earth evolution. This introductory unit is suitable for all students including those wanting to try a natural science. It explores the composition and structure of our planet and the dynamic processes that change our environment. Students become skilled at geoscience techniques that permit detailed study of the Earth and explore via case studies modern sedimentary environments; volcanoes and volcanic hazards; and economic geology. The unit provides a strong background in geoscience for further studies in geology, geophysics, geography, museum studies, geomorphology, soils, astronomy and environmental science; and insights into Earth materials and their relationship to the environment for students of economics, physics, archaeology, chemistry, biology, marine science and education. This unit involves eye-opening field trips in tutorial classes around campus and a day trip across the Blue Mountains.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
On successful completion of this unit, you will be able to:

Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
Competence in applying geo-scientific principles to understanding the world around you
Capacity to employ appropriate geo-scientific tools to solve problems and to interpret the results
Understanding scientific methodology
Competence in accessing, using and synthesising appropriate information
Application of knowledge to solving problems and evaluating ideas and information
Capacity to present ideas clearly with supporting evidence

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly quiz</td>
<td>10%</td>
<td>Weekly</td>
</tr>
<tr>
<td>Case studies</td>
<td>45%</td>
<td>TBA</td>
</tr>
<tr>
<td>Final examination</td>
<td>45%</td>
<td>University Examination Period</td>
</tr>
</tbody>
</table>

Weekly quiz
Due: Weekly
Weighting: 10%

On successful completion you will be able to:
• Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
• Competence in applying geo-scientific principles to understanding the world around you
• Capacity to employ appropriate geo-scientific tools to solve problems and to interpret the results
• Understanding scientific methodology
• Competence in accessing, using and synthesising appropriate information
• Application of knowledge to solving problems and evaluating ideas and information
• Capacity to present ideas clearly with supporting evidence

Case studies
Due: TBA
Weighting: 45%

Case studies (includes Hartley quiz + field notes 5%; Mt. Todd, 15%; Volcanoes, 10%, Hartley 15%)
On successful completion you will be able to:

- Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
- Competence in applying geo-scientific principles to understanding the world around you
- Capacity to employ appropriate geo-scientific tools to solve problems and to interpret the results
- Understanding scientific methodology
- Competence in accessing, using and synthesising appropriate information
- Application of knowledge to solving problems and evaluating ideas and information
- Capacity to present ideas clearly with supporting evidence

Final examination
Due: University Examination Period
Weighting: 45%

On successful completion you will be able to:

- Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
- Competence in applying geo-scientific principles to understanding the world around you
- Capacity to employ appropriate geo-scientific tools to solve problems and to interpret the results
- Understanding scientific methodology
- Competence in accessing, using and synthesising appropriate information
- Application of knowledge to solving problems and evaluating ideas and information
- Capacity to present ideas clearly with supporting evidence

Delivery and Resources

Classes

IMPORTANT INFORMATION FOR EXTERNAL STUDENTS

Field trip and on-campus sessions

- The Hartley field trip for external students is on Saturday 8th October. There will be a bus leaving from MQ campus.
- The first on-campus session is on Saturday 3rd and Sunday 4th September.
- The second on-campus session is on Sunday 9th October.
Required and Recommended Texts and/or Materials

TEXTS AND REFERENCES

Unit booklet

This contains diagrams that will be referred to in lectures and the laboratory exercises. It is available through the University Co-Operative Bookshop. The completed worksheets are invaluable as an aid during revision for the examination. The booklet is essential for the laboratory exercises, but it is not intended to serve as a formal guide to the lectures. You will have to take your own explanatory notes and complement them with extra reading.

Textbook (available in the Bookshop)

The recommended text is:

This gives more background information, often written from a different perspective from the lectures. It also contains photographs and diagrams for use in the lectures and laboratory exercises. In the library you may find several other basic textbooks on Physical Geology that will be of use to you.

Reading List

You may find the following books helpful for reference. They should provide useful supportive material to the lectures, case studies and laboratory exercises, and supplement the prescribed textbook and the Unit of Study booklet.

Earth Dynamics, Materials and the Environment is a subject relying heavily on observation, so it will be of great help to look at a variety of illustrations of the features that are covered in the unit of study. The books listed below are generally well illustrated, with striking colour photographs and diagrams.

** indicates a book in Special Reserve in the Library; * indicates a book on 3-day loan.

CD-ROMS

Library Loans
The Library at Macquarie will have provided you with information on library loans. The procedures differ for metropolitan and country students. Please familiarise yourself with the procedures appropriate in your case. If you have any enquiries contact the Library on (02) 9850-7500.

Technology Used and Required
Described in the Unit page at http://ilearn.mq.edu.au

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Lectures available online (iLearn/iLecture)</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction – Meet Planet Earth (1E - 1VES) [JCA]</td>
<td>Geoscience Tools (1 E ; 1 VES) [RF]</td>
<td>Practical 1: Introduction to Maps Mt Todd Case Study</td>
</tr>
<tr>
<td>2</td>
<td>Plate Tectonics: The Unifying Theme (2E - 7 VES) [JCA]</td>
<td>Geology of the Landscape (6,15E - 4 VES) [RF]</td>
<td>Practical 2: Campus Excursion Mt Todd Case Study</td>
</tr>
<tr>
<td>3</td>
<td>Atoms, Elements, Minerals, Rocks (3E -2, 3 VES [JCA]</td>
<td>New Minerals from Old (6E - 4 VES) [KD]</td>
<td>Practical 3: Geological Maps Mt Todd Case Study</td>
</tr>
<tr>
<td>4</td>
<td>Plate Tectonics and Igneous Rocks (4, 13,14 E - 9 VES) [JCA]</td>
<td>Sediments to Rocks (7E - 4 VES) [KD]</td>
<td>Practical 4: Minerals and Mineral Properties Mt Todd Case Study</td>
</tr>
<tr>
<td>5</td>
<td>Volcanoes and Volcanic Hazards (5E - 9 VES) [HH]</td>
<td>Exploration Technology [ML]</td>
<td>Practical 5: Volcanic (Extrusive) Rocks Volcanoes Case Study</td>
</tr>
<tr>
<td>6</td>
<td>Plutons and Intrusive Activity (4,14E - 9 VES) [HH]</td>
<td>Dating the Earth with Zircon [EB]</td>
<td>Practical 6: Plutonic (Intrusive) Rocks Volcanoes Case Study</td>
</tr>
<tr>
<td>7</td>
<td>Metamorphism and Metamorphic Rocks (8E - 3 VES) [ND]</td>
<td>Oceans (12 VES) [KD]</td>
<td>Practical 7: Metamorphic Minerals and Rocks Volcanoes Case Study</td>
</tr>
<tr>
<td>8</td>
<td>Public Holiday</td>
<td>Rivers (14) [KD]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Changing Rocks and Crustal Deformation (8,10E - 3 VES) [ND]</td>
<td>Groundwater (5 VES) [KD]</td>
<td>Practical 8: Minerals of Economic Significance Hartley Case Study</td>
</tr>
<tr>
<td>10</td>
<td>Earthquakes and Earthquake Hazards (11E - 8 VES) [JCA]</td>
<td>Sydney Basin and Beyond [RF]</td>
<td>Practical 9: Earthquakes and Seismology Hartley Case Study</td>
</tr>
</tbody>
</table>
Learning and Teaching Activities

Lectures

Review of fundamental concepts associated with specific topics. Conceptual background for practicals.

Practicals

Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](http://www.mq.edu.au/policy/docs/). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- **Special Consideration Policy** http://www.mq.edu.au/policy/docs/special_consideration/policy.html

In addition, a number of other policies can be found in the [Learning and Teaching Category](http://www.mq.edu.au/policy/docs/Learning_and_Teaching/) of Policy Central.
Student Support

Macquarie University provides a range of Academic Student Support Services. Details of these services can be accessed at: http://students.mq.edu.au/support/

UniWISE provides:

- Online learning resources and academic skills workshops http://www.students.mq.edu.au/support/learning_skills/
- Personal assistance with your learning & study related questions.
- The Learning Help Desk is located in the Library foyer (level 2).
- Online and on-campus orientation events run by Mentors@Macquarie.

Student Enquiry Service

Details of these services can be accessed at http://www.student.mq.edu.au/ses/.

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help

If you wish to receive IT help, we would be glad to assist you at http://informatics.mq.edu.au/help/.

When using the university's IT, you must adhere to the Acceptable Use Policy. The policy applies to all who connect to the MQ network including students and it outlines what can be done.

Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
- Understanding scientific methodology
Assessment tasks

• Case studies
• Final examination

Learning and teaching activities

• Review of fundamental concepts associated with specific topics. Conceptual background for practicals.
• Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcome

• Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress

Assessment tasks

• Case studies
• Final examination

Learning and teaching activities

• Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

• Understanding of the tools and methods that are used in the geosciences; these are
organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress

• Understanding scientific methodology

Assessment tasks

• Case studies
• Final examination

Learning and teaching activities

• Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcome

• Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress

Assessment task

• Case studies

Learning and teaching activity

• Review of fundamental concepts associated with specific topics. Conceptual background for practicals.
• Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

• Understanding of the tools and methods that are used in the geosciences; these are
organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
• Understanding scientific methodology

Assessment tasks
• Case studies
• Final examination

Learning and teaching activities
• Hands-on activities associated with important and practical concepts/tools used in
different Earth Science disciplines

Engaged and Ethical Local and Global citizens
As local citizens our graduates will be aware of indigenous perspectives and of the nation's
historical context. They will be engaged with the challenges of contemporary society and with
knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded,
sensitive to others and inclusive, and to be open to other cultures and perspectives: they should
have a level of cultural literacy. Our graduates should be aware of disadvantage and social
justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcomes
• Understanding of the tools and methods that are used in the geosciences; these are
organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
• Understanding scientific methodology

Assessment task
• Case studies

Learning and teaching activity
• Review of fundamental concepts associated with specific topics. Conceptual background
for practicals.
• Hands-on activities associated with important and practical concepts/tools used in
different Earth Science disciplines

Socially and Environmentally Active and Responsible
We want our graduates to be aware of and have respect for self and others; to be able to work
with others as a leader and a team player; to have a sense of connectedness with others and
country; and to have a sense of mutual obligation. Our graduates should be informed and active
participants in moving society towards sustainability.

This graduate capability is supported by:
Learning outcomes

• Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress
• Understanding scientific methodology

Assessment task

• Case studies

Learning and teaching activity

• Review of fundamental concepts associated with specific topics. Conceptual background for practicals.

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcome

• Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress

Assessment tasks

• Case studies
• Final examination

Learning and teaching activities

• Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:
Learning outcome

- Understanding of the tools and methods that are used in the geosciences; these are organised in three modules: o Tools of the geoscientist o Hot rocks o Rocks under stress

Assessment task

- Weekly quiz

Learning and teaching activity

- Review of fundamental concepts associated with specific topics. Conceptual background for practicals.
- Hands-on activities associated with important and practical concepts/tools used in different Earth Science disciplines

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/02/2013</td>
<td>The Description was updated.</td>
</tr>
</tbody>
</table>