ITEC800

Systems Engineering Process

S1 Evening 2017

Dept of Computing

Contents

General Information .. 2
Learning Outcomes .. 2
Assessment Tasks .. 3
Delivery and Resources 4
Unit Schedule ... 6
Learning and Teaching Activities 7
Policies and Procedures 8
Graduate Capabilities 9
Changes from Previous Offering 14
Grading and Standards 14
General Information

Unit convenor and teaching staff
Convenor and Lecturer
Carl Svensson
carl.svensson@mq.edu.au
Contact via email
No set consultation times, organise a time via email.

Credit points
4

Prerequisites
COMP355 or COMP365 or ISYS355

Corequisites

Co-badged status

Unit description
Topics covered in this unit include the software development life cycle and its phases, generic and project-specific aspects of the life cycle, risk, estimation methods, process models and modelling, process maturity, process improvement, metrics, experimentation, reliability, experience packaging, organisational issues, socio-technical aspects of process, software evolution, process-centred development environments and standards.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
2. Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
3. Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.
4. Adapt and apply different communication methods for a targeted audience in both written and spoken forms.
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prac and Research Tasks</td>
<td>30%</td>
<td>No</td>
<td>Mon 8am: Weeks 4, 7, 10 & 13</td>
</tr>
<tr>
<td>Group Project</td>
<td>40%</td>
<td>No</td>
<td>Multiple</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>Yes</td>
<td>Exam Period</td>
</tr>
</tbody>
</table>

Prac and Research Tasks

Due: **Mon 8am: Weeks 4, 7, 10 & 13**
Weighting: 30%

4 x Individual submissions assessing various topics covered in the course. There are both practical and research tasks associated with each deliverable.

This Assessment Task relates to the following Learning Outcomes:

- Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
- Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
- Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.

Group Project

Due: **Multiple**
Weighting: 40%

The small groups (between 2-4 students) come up with a project of their choosing in consultation with the unit convenor and have deliverables set throughout the semester. These deliverables include some documentation, presentations, and a working prototype of the intended design. Group project deliverable dates to be determined in week 1 with student consultation based on workloads and types of project selected. While group work will be key, the marking and assessment of deliverables will be individually identifiable as per the university rules around assessment.

This Assessment Task relates to the following Learning Outcomes:

- Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
- Analyse operational feasibility considerations such as usability, maintainability, reliability
and security in the creation or ongoing support of a system.

- Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.
- Adapt and apply different communication methods for a targeted audience in both written and spoken forms.

Final Exam

Due: Exam Period
Weighting: 30%
This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

The exam is a written exam with no multiple choice sections. It is held in the usual examination period of the semester. Students have 3 hours written time plus 10 minutes reading time to complete the sections of the exam.

This is a hurdle assessment: Students must obtain at least 40% in the final exam to be eligible to pass the unit. Students obtaining between 30% and 40% in the first attempt will be automatically given a second attempt to pass the hurdle requirement.

This Assessment Task relates to the following Learning Outcomes:

- Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
- Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
- Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.
- Adapt and apply different communication methods for a targeted audience in both written and spoken forms.

Delivery and Resources

The unit content will be presented in lectures and mixed sessions. There are many books and online publications that can be consulted for reference material. Where available, limited numbers of hard-copy versions of textbooks listed below have been placed in the reserve section of the Macquarie University Library. Students will be able to access these versions for short periods of time, but may not be able to borrow them for extended periods of time (which would restrict access to other students). Access to the textbooks is certainly beneficial to review or further explore concepts covered in the course.
Primary textbooks being used for the 2017 offering of ITEC800

Classes:

Classes for ITEC800 this semester are in a 4 hour block on Thursday evenings from 6:00pm until 10:00pm. The breakdown of each scheduled class has a lecture component (from 6:00pm to 8:00pm) and a mixed-mode session (from 8:10pm to 10:00pm).

Be prepared to participate in discussions, ask and answer questions, and provide perspectives from your own background and workplaces. Lectures will be informative but also exploratory in nature, and so it is certainly recommended that a high participation and attendance level be maintained throughout the course.

Note: There are no clashes with public holidays in ITEC800 for this semester.

Other resources:

Lecture material, assignment specifications and extra readings not listed above will be provided through the iLearn web page for ITEC800.

Submission methods for assessment tasks:

All soft copy assignment submissions / marks will be done through the ITEC800 page on iLearn. This will be the official form of assignment submission accepted for this course unless otherwise stated in the specification or through the discussion process of an extension (see below).

Late submission:

No late submissions for any deliverables will be accepted. This is mainly because feedback cycles to students will be affected. Extensions (see below) with no penalty applied may be granted subject to the conditions stated in the "extensions" section below.

Late submissions of group based assignments are not permitted unless under exceptional circumstances with documentary evidence provided to the unit convenor, which may include medical certificates as per the Department of Computing policy. One person being sick does not mean the group cannot submit work. Students are urged to have backup plans for group based submissions. Early submissions are encouraged, and can always be updated multiple times before the deadline.

Extensions:

Extensions without a grade penalty may be provided to groups or individuals who contact the unit convenor BEFORE the deadline (unless exceptional circumstances apply) and can provide documentary evidence of illness or other misadventure. If approved, a new submission timeline and submission method will be discussed on a case by case basis.

Students are strongly advised to contact the unit convenor as early as possible if there are any issues that will not make an on-time submission possible.
Exam:

The final exam will focus on content covered in the classes throughout the semester. The final exam is a hurdle requirement. That means that the hurdle must be met in order to pass the unit. See the assessment tasks section for details.

Disruption to studies for the final exam:

If you apply for Disruption to Study for your final examination, you must make yourself available for the week of July 24 – 28, 2017. If you are not available at that time, there is no guarantee an additional examination time will be offered. Specific examination dates and times will be determined at a later date.

Second-chance hurdle examinations will also be offered in the week of July 24 - 28, 2017. Results will be released on July 13. You will be notified shortly after that date of your eligibility for a hurdle retry and you must also make yourself available during that week to take advantage of this opportunity.

Website and access to unit material:

The web page and content for this unit can be found at iLearn: https://ilearn.mq.edu.au/. Note that the unit content is not publicly available and requires a login to access the content and discussions. If you are having trouble accessing the material, get in contact with the unit convenor.

Unit Schedule

Classes for ITEC800 in 2017 are scheduled to run on Thursday evenings from 6:00pm - 10:00pm

<table>
<thead>
<tr>
<th>Class Schedule</th>
<th>Topics - (Subject to change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Taking a systems perspective - Introduction and consolidation of previous knowledge, identifying the system and environment, socio-technical considerations, ethics and professionalism, initial plan-based and Agile considerations.</td>
</tr>
<tr>
<td>Week 2</td>
<td>Systems analysis - Problem analysis and requirements engineering.</td>
</tr>
<tr>
<td>Week 3</td>
<td>Systems analysis - Problem analysis and requirements engineering.</td>
</tr>
<tr>
<td>Week 4</td>
<td>System evaluation and testing - Validation, verification and testing.</td>
</tr>
<tr>
<td>Week 5</td>
<td>System evaluation and testing - Quality, security, and other focus areas.</td>
</tr>
<tr>
<td>Week 6</td>
<td>System design, implementation, ongoing support, and end-of-life considerations</td>
</tr>
<tr>
<td>Week 7</td>
<td>System design, implementation, ongoing support, and end-of-life considerations</td>
</tr>
</tbody>
</table>
Learning and Teaching Activities

Readings
Pre-lecture recommended readings to assist learning concepts and stimulate discussion topics.

Lectures
Discussion and exploration of key concepts.

Mixed-mode sessions
Practical focus on selected topic areas set up during lectures.

Individual practical and research assignments
Individual tasks and research activities focusing on selected concepts covered in lectures.

Group-based assignments
Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.

Student presentations
Group student presentations given by each individual member of the group outlining different...
aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](http://mq.edu.au/policy/docs/). Students should be aware of the following policies in particular with regard to Learning and Teaching:

In addition, a number of other policies can be found in the [Learning and Teaching Category](http://www.mq.edu.au/policy/docs/) of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser
Unit guide ITEC800 Systems Engineering Process

Student Enquiry Service
For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support
Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

IT Help
For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the Acceptable Use of IT Resources Policy. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities
PG - Discipline Knowledge and Skills
Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes
• Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
• Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
• Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.

Assessment tasks
• Prac and Research Tasks
• Group Project
• Final Exam

Learning and teaching activities
• Pre-lecture recommended readings to assist learning concepts and stimulate discussion topics.
• Discussion and exploration of key concepts
• Practical focus on selected topic areas set up during lectures.
Individual tasks and research activities focusing on selected concepts covered in lectures.

Group student presentations given by each individual member of the group outlining different aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

- Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
- Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
- Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.

Assessment tasks

- Prac and Research Tasks
- Group Project
- Final Exam

Learning and teaching activities

- Discussion and exploration of key concepts
- Practical focus on selected topic areas set up during lectures.
- Individual tasks and research activities focusing on selected concepts covered in lectures.
- Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.
- Group student presentations given by each individual member of the group outlining different aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

https://unitguides.mq.edu.au/unit_offerings/75747/unit_guide/print
PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
- Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
- Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.

Assessment tasks

- Prac and Research Tasks
- Group Project
- Final Exam

Learning and teaching activities

- Practical focus on selected topic areas set up during lectures.
- Individual tasks and research activities focusing on selected concepts covered in lectures.
- Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.
- Group student presentations given by each individual member of the group outlining different aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

PG - Effective Communication

Our postgraduates will be able to communicate effectively and convey their views to different social, cultural, and professional audiences. They will be able to use a variety of technologically supported media to communicate with empathy using a range of written, spoken or visual formats.

This graduate capability is supported by:
Learning outcomes

• Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
• Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
• Adapt and apply different communication methods for a targeted audience in both written and spoken forms.

Assessment tasks

• Prac and Research Tasks
• Group Project
• Final Exam

Learning and teaching activities

• Discussion and exploration of key concepts
• Practical focus on selected topic areas set up during lectures.
• Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.
• Group student presentations given by each individual member of the group outlining different aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

PG - Engaged and Responsible, Active and Ethical Citizens

Our postgraduates will be ethically aware and capable of confident transformative action in relation to their professional responsibilities and the wider community. They will have a sense of connectedness with others and country and have a sense of mutual obligation. They will be able to appreciate the impact of their professional roles for social justice and inclusion related to national and global issues

This graduate capability is supported by:

Learning outcomes

• Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
• Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
• Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.
Assessment tasks

• Prac and Research Tasks
• Group Project
• Final Exam

Learning and teaching activities

• Discussion and exploration of key concepts
• Practical focus on selected topic areas set up during lectures.
• Individual tasks and research activities focusing on selected concepts covered in lectures.
• Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.
• Group student presentations given by each individual member of the group outlining different aspects investigated in their group-based assignment. Feedback on content and presentation style is included as part of the student presentation process.

PG - Capable of Professional and Personal Judgment and Initiative

Our postgraduates will demonstrate a high standard of discernment and common sense in their professional and personal judgment. They will have the ability to make informed choices and decisions that reflect both the nature of their professional work and their personal perspectives.

This graduate capability is supported by:

Learning outcomes

• Adapt and apply systems thinking, project management processes, and quality processes in a systems lifecycle.
• Analyse operational feasibility considerations such as usability, maintainability, reliability and security in the creation or ongoing support of a system.
• Evaluate various system lifecycle phases, their activities, their impact, and their context in larger systems projects.
• Adapt and apply different communication methods for a targeted audience in both written and spoken forms.

Assessment tasks

• Prac and Research Tasks
• Group Project
• Final Exam
Learning and teaching activities

- Practical focus on selected topic areas set up during lectures.
- Individual tasks and research activities focusing on selected concepts covered in lectures.
- Working in small groups to discuss, generate and deliver a system with documentation for different phases in the software development process.

Changes from Previous Offering

Updated learning outcomes and some topic areas. Assessment structure remains the same, however, the group project will be finalised upon discussion with the cohort in week 1 to better work around student workloads.

Grading and Standards

For ITEC800, the final mark is calculated by combining the marks for all assessment tasks according to the percentage weightings shown in the assessment summary which total up to 100. In order to pass the unit, a student must obtain:

- a mark of 50 or above out of 100 for the total of all assessments; AND,
- a mark of 40% or higher in the final exam. This is a hurdle requirement.

Students can obtain a higher grade than a Pass (P) by meeting the above requirements and:

- obtain a mark of 65 - 74 out of 100 to receive a Credit (Cr)
- obtain a mark of 75 - 84 out of 100 to receive a Distinction (D)
- obtain a mark of 85 - 100 out of 100 to receive a High Distinction (HD)

ITEC800 is a unit where continued levels of engagement throughout the semester are hugely beneficial. This is reflected in the assessment tasks as 70% of the unit assessment happens before the final exam. Students are encouraged to manage their workload, engage in discussion in classes, and be active in their own learning and exploration of concepts.

Plagiarism cases (see the policy section) can potentially affect an individual grade, the student's overall grade, or even the eligibility for a student to continue their degree. Details about assessment policies can be found in the policies and procedures section.