

ACST891

Data Analytics Tools for Finance and Insurance

S2 Evening 2017

Dept of Applied Finance and Actuarial Studies

Contents

General Information	2
Learning Outcomes	3
General Assessment Information	3
Assessment Tasks	3
Delivery and Resources	6
Unit Schedule	6
Policies and Procedures	9
Graduate Capabilities	11
Research and Practice	13

Disclaimer

Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.

General Information

Unit convenor and teaching staff

Unit convenor and lecturer

Sachi Purcal

sachi.purcal@mq.edu.au

Contact via Email

E4A615

Tuesdays 1400-1600 during teaching weeks

Lecturer

Neil Fraser

neil.fraser@mq.edu.au

Contact via Email or mobile (+61 408 419 691)

Refer to iLearn

Refer to iLearn

Credit points

4

Prerequisites

ACST890

Corequisites

Co-badged status

Unit description

The world of `Big Data' is rapidly evolving in finance and insurance, with new technologies emerging while existing technologies mature. Hadoop is the first high-performance commercial computing platform that works at scale and is affordable at scale. This unit focuses on the Hadoop platform and the Hadoop ecosystem of tools. These technologies are at the core of the `Big Data' phenomenon, and they facilitate scalable management and processing of vast quantities of data. Students who complete this unit will understand the architecture of Hadoop clusters. Using Hadoop and related `Big Data' technologies such as MapReduce, Hive, Impala and Pig, they will develop analytics to devise solutions to the types of problems challenging finance and insurance today. Students undertaking this unit are expected to simultaneously enrol and complete the Cloudera course on Apache Hadoop, with the aim of obtaining the resulting Cloudera professional credentials.

Important Academic Dates

Information about important academic dates including deadlines for withdrawing from units are

available at https://www.mq.edu.au/study/calendar-of-dates

Learning Outcomes

On successful completion of this unit, you will be able to:

Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.

Assemble statistical and machine learning techniques to tackle data science problems.

Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.

Complete one of the Cloudera certification qualifications: https://www.cloudera.com/more/training/certification.html.

Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

General Assessment Information

For all assessments the following apply.

- Assessment criteria for all assessment tasks will be provided on the unit iLearn site.
- · All individual assessment results will be made available under Grades on the website.
- It is the responsibility of students to view their marks for each within-session assessment
 on iLearn within 20 working days of posting. If there are any discrepancies, students
 must contact the unit convenor immediately. Failure to do so will mean that queries
 received after the release of final results regarding assessment marks (not including the
 final exam mark) will not be addressed.
- In the case where a disruption to studies application is approved, the student may be
 offered an alternative assessment or may receive a mark based on the percentage mark
 achieved by the student in one or more other assessment tasks, at the unit convenor's
 discretion.

Assessment Tasks

Name	Weighting	Hurdle	Due
Online Quiz	0%	No	23 August
Assignment (group component)	10%	No	17/10/17

Name	Weighting	Hurdle	Due
Assignment (individual part)	40%	No	17/10/17
Final examination	50%	No	University Examination Period

Online Quiz

Due: 23 August Weighting: 0%

The online quiz will cover the first three weeks' material. The quiz is due on Wednesday 23 August (Week 04) at 11.30 p.m. (2330) to be submitted online via the iLearn site.

Please use the quiz an an indicator of whether you are progressing satisfactorily in the unit. If you are having difficulties, please see the Unit Convenor and consider withdrawing before the census date on Friday of Week 04.

On successful completion you will be able to:

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.

Assignment (group component)

Due: **17/10/17** Weighting: **10%**

The assignment will consist of two parts: a group component and an individual component.

The group component will consist of external analysis based on big data techniques. The group component should be about 1000–2000 words (12pt font size with 1.5 spacing). It must be submitted (as a *readable* PDF file—it is students' responsibility to check this) via iLearn.

You will be a member of a syndicate group that selects or builds data sets from publicly available data that can be used to formulate a data science strategy for a company. The comprehensive analysis will utilise knowledge and skills developed during ACST890 and ACST891.

No extensions will be granted. Students who have not submitted the task prior to the deadline will be awarded a mark of zero for the task, except for cases in which an application for disruption to studies is made and approved.

On successful completion you will be able to:

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- · Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.
- Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

Assignment (individual part)

Due: **17/10/17** Weighting: **40%**

The assignment will consist of two parts: a group component and an individual component.

The individual component will consist of analysis. Your individual contribution to the assignment should be about 2000–3000 words (12pt font with 1.5 spacing). Each member of the syndicate group must clearly identify which element of the group assignment is his or her individual contribution. This can be done by putting your names in brackets next to a section heading and/or in the table of contents (if you use one).

Your individual work must be submitted (as a *readable* PDF file—it is students' responsibility to check this) via iLearn.

No extensions will be granted. There will be a deduction of 10% of the total available marks made from the total awarded mark for each 24 hour period or part thereof that the submission is late (for example, 25 hours late in submission—20% penalty). This penalty does not apply in cases for which an application for disruption to studies has been made and approved. No submissions will be accepted after solutions have been posted.

On successful completion you will be able to:

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.

- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.
- Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

Final examination

Due: University Examination Period

Weighting: 50%

The final examination will be a three-hour written paper with ten minutes reading time, held during the university examination period.

The exam will be open book.

On successful completion you will be able to:

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.

Delivery and Resources Textbook

No textbook in envisioned for this course. Readings will be assigned over the semester from a variety of sources.

Technology used and required

We will learn a variety of data science packages over the semester. In addition, you will need to be familiar with document processing software (e.g., WORD) to produce your group assignment.

Unit Schedule

Sachi Purcal	Applied data science	VM setup for Cloudera
	What is data science?	
	 What kind of person does data science? 	
	Corporate data science	
	International data science	
	Government data science	
	Life sciences (bio-informatics and Pharma)	
	zilo colonece (cie informatice ana i naima)	
Neil Fraser	External analysis techniques	Sourcing a web data set
	 The web as a data warehouse 	
	Data markets	
	Linked open data	
	Social profiling	
	Undertake industry analysis, to assess existing and	
	future industry forces, industry structure and industry	
	attractiveness (big data techniques)	
	amachicines (signate tooming soo)	
Neil Fraser	Internal analysis techniques	Google Refine tutorial. Undertake a
	 Identifying strategic data 	data resource audit check: quality,
	 Identifying operational data 	cleaning and parsing.
	 Orchestrating value-chains that cover data activities for 	
	analysis	
	Data lineage and data science life cycle	
	Analytical frameworks	
Neil Fraser	Big data tools	Visualisation with Google Data Studio
	 Visualisation tools 	
	 Google Data Studio 	
	Power BI	
	 Python Seaborn 	
	Query tools	
	 Google Big Query 	
	∘ Fusion	
	∘ Impala and Hive	
	,	
Neil Fraser	Big data technologies	Ingest data to VM and query with
	Database technologies	Impala and Hive
	∘ Hadoop	
	· NoSQL	
	∘ RDBMS	
	 Parallel processing 	
	Hadoop architecture	
	MapReduce	
	Mapricauce	

Neil F	raser	Natural language processing	Ingest VODAFAIL data to GATE/ LEXIMANCER /NVIVO
		 Information annotation and extraction 	LEXIMANCER /NVIVO
		 Optical character recognition sentence 	
		segmentation	
		 Part-of-speech tagging 	
		 Named entity recognition 	
		 Gazetteers 	
		 Information extraction 	
		 Relation and co-reference extraction 	
		Information meaning	
		 Ontology mapping 	
		∘ Topic models	
		 Sentiment analysis 	
		Information tools and techniques	
		NLTK	
		• GATE	
		• GATE	
Neil F	- raser	Machine learning	Spark or Sickit or Mahout
		What is machine learning?	
		The history of machine learning	
		 What's new in machine learning? 	
		Supervised versus unsupervised learning	
		Six machine learning tasks	
		Clustering	
		Detecting outliers	
		3. Affinity analysis	
		4. Classification	
		Regression analysis	
		Recommendation	
		Machine learning and MapReduce	
		• Spark	
Neil F	-raser	Taking data science to production	Assignment
		Implementing	Ū
		Scalability and upgrading models	
		Versioning	
Neil F	-raser	Business Models in data science	Assignment
		 Recommend new business models of firms built on 	
		data science	
		 Critically analyse the structural and cultural 	
		requirements for competitive data analysis	
		Internet commerce, insurance, automobiles, banking,	
		mining	
		Č	

Sachi Purcal	Moving beyond linearity + Tree-based methods	Tutorial problems on this material
	 Polynomial regression 	
	Step functions	
	Basis functions	
	Regression splines	
	 Smoothing splines 	
	 Local regression 	
	Generalised additive models (GAMs)	
	Decision trees	
Sachi Purcal	Tree-based methods + Support Vector Machines	Tutorial problems on this material
	 Bagging, random forests, boosting 	
	 Maximal margin classifier 	
	 Support vector classifiers 	
	Support vector machines	
	 SVMs with more than two classes 	
	Relationship to logistic regression	
Sachi Purcal	Unsupervised learning	Tutorial probelms on this material
	 Challenge of unsupervised learning 	
	 Principal components analysis 	
	Clustering methods	
Sachi Purcal	Revision	Mahout (Apache open source machin
	 Exam preparation 	learning library)

Policies and Procedures

Macquarie University policies and procedures are accessible from <u>Policy Central</u>. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

Assessment Policy http://mq.edu.au/policy/docs/assessment/policy_2016.html

Grade Appeal Policy http://mq.edu.au/policy/docs/gradeappeal/policy.html

Complaint Management Procedure for Students and Members of the Public http://www.mq.edu.au/policy/docs/complaint_management/procedure.html

Disruption to Studies Policy (in effect until Dec 4th, 2017): http://www.mq.edu.au/policy/docs/disruption_studies/policy.html

Special Consideration Policy (in effect from Dec 4th, 2017): https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policies/special-consideration

In addition, a number of other policies can be found in the <u>Learning and Teaching Category</u> of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of

Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in *iLearn*, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in <a href="extraction-color: blue} eStudent. For more information visit ask.m q.edu.au.

Supplementary exams

Information regarding supplementary exams, including dates, is available at:

http://www.businessandeconomics.mq.edu.au/current_students/undergraduate/how_do_i/disrupt ion_to_studies

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- · Academic Integrity Module for Students
- Ask a Learning Adviser

Student Services and Support

Students with a disability are encouraged to contact the <u>Disability Service</u> who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

IT Help

For help with University computer systems and technology, visit http://www.mq.edu.au/about_us/ offices_and_units/information_technology/help/.

When using the University's IT, you must adhere to the <u>Acceptable Use of IT Resources Policy</u>. The policy applies to all who connect to the MQ network including students.

Graduate Capabilities

PG - Discipline Knowledge and Skills

Our postgraduates will be able to demonstrate a significantly enhanced depth and breadth of knowledge, scholarly understanding, and specific subject content knowledge in their chosen fields.

This graduate capability is supported by:

Learning outcomes

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- · Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.
- Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

Assessment tasks

- Online Quiz
- Assignment (group component)
- Assignment (individual part)
- Final examination

PG - Critical, Analytical and Integrative Thinking

Our postgraduates will be capable of utilising and reflecting on prior knowledge and experience, of applying higher level critical thinking skills, and of integrating and synthesising learning and knowledge from a range of sources and environments. A characteristic of this form of thinking is the generation of new, professionally oriented knowledge through personal or group-based critique of practice and theory.

This graduate capability is supported by:

Learning outcomes

 Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.

- · Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.
- Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

Assessment tasks

- Online Quiz
- Assignment (group component)
- Assignment (individual part)
- Final examination

PG - Research and Problem Solving Capability

Our postgraduates will be capable of systematic enquiry; able to use research skills to create new knowledge that can be applied to real world issues, or contribute to a field of study or practice to enhance society. They will be capable of creative questioning, problem finding and problem solving.

This graduate capability is supported by:

Learning outcomes

- Apply and assess different methods and techniques to formulate data analytic and visualisation solutions to finance and insurance 'Big Data' problems using various computing tools.
- Assemble statistical and machine learning techniques to tackle data science problems.
- Reflect on knowledge learned of theory and business practices for future learning and ongoing professional development.
- Complete one of the Cloudera certification qualifications: https://www.cloudera.com/ more/training/certification.html.
- Engage effectively with others to critically examine different viewpoints and work productively in a group by coordinating activities, allocating tasks and synthesizing different material and viewpoints.

Assessment tasks

· Online Quiz

- Assignment (group component)
- Assignment (individual part)
- Final examination

Research and Practice

This unit uses research by Macquarie University researchers, as well as from other Australian and international researchers (references are given in the unit notes).

You are also required to source and use Australian and international research as part of the assignment in this unit.