WCOM125
Fundamentals of Computer Science

MUIC Term 1 2017

Macquarie University International College

Contents

General Information ... 2
Learning Outcomes ... 2
General Assessment Information 3
Assessment Tasks .. 11
Delivery and Resources ... 14
Unit Schedule ... 17
Learning and Teaching Activities 19
Policies and Procedures .. 19
Graduate Capabilities ... 23
Course Contact Hours ... 26
Unit Specific Texts and Materials 26
Changes since First Published 27

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Teacher
Gaurav Gupta
gaurav.gupta@mq.edu.au
Contact via Email
Macquarie University International College
Contact staff member

Teacher
Pongsak Suvanpong
pongsak.suvanpong@mq.edu.au
Contact via By email
Macquarie University International College
Contact staff member

Credit points
3

Prerequisites
WCOM115

Corequisites

Co-badged status

Unit description
This unit studies programming as a systematic discipline and introduces more formal software design methods. Programming skills are extended to include elementary data structures and abstract data types. There is a strong emphasis on problem solving and algorithms, including aspects of correctness, complexity and computability.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes

1. Apply problem solving skills to develop algorithms
2. Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
3. Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
4. Compare different methods available to solve the same problem in terms of efficiency and other criteria.
5. Use discipline specific terminology to communicate concepts and ideas relevant to this unit

General Assessment Information

Requirements to Pass

In order to pass this unit a student must successfully complete the hurdle requirement and obtain a mark of 50 or more for the unit (i.e. obtain a passing grade P/ CR/ D/ HD).

For further details about grading, please refer to Schedule 1 of the Assessment Policy.

Students must also pass any hurdle assessments as stipulated in the Assessment Section of this Unit Guide.

Grading

The College will award common result grades as specified in Schedule 1 of the Assessment Policy.

Students will receive criteria and standards for specific assessment tasks, which will be aligned with the grading descriptors given in Schedule 1.

The attainment (or otherwise) of learning outcomes for a unit of study will be reported by grade and mark which will correspond to the Schedule 1 and be as outlined below.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mark Range</th>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>High Distinction</td>
<td>85-100</td>
<td>Pass</td>
</tr>
<tr>
<td>D</td>
<td>Distinction</td>
<td>75-84</td>
<td>Pass</td>
</tr>
<tr>
<td>CR</td>
<td>Credit</td>
<td>65-74</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Pass 50-64 Pass Provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the program; routine argumentation with acceptable justification; communication of information and ideas adequately in terms of the conventions of the program. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

Fail 0-49 Fail Does not provide evidence of attainment of learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; missing, undeveloped, inappropriate or confusing argumentation; incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the program.

Did Not Attend Student has failed the compulsory attendance component of assessment

Final Grades not receiving a mark because the student has withdrawn after the Census Date, not submitted or completed one or more components of the assessment, has been awarded a supplementary assessment or because of an unresolved matter such as allegations of academic misconduct are outlined in Schedule 1.

Where to find information about assessment

General assessment information including the number and nature of assessments, due dates and weightings has been provided in this unit guide.

Specific assessment information including assignment instructions, questions, marking criteria and rubrics as well as examples of relevant and related assessment tasks and responses will be available in the Assessment section on iLearn. For units that have final examinations, students may access past final exam papers using MultiSearch.

Student Responsibilities

As per the Assessment Policy, students are responsible for their learning and are expected to:

- actively engage with assessment tasks, including carefully reading the guidance provided, understanding criteria, spending sufficient time on the task and submitting work on time;
- read, reflect and act on feedback provided;
- actively engage in activities designed to develop assessment literacy, including taking the initiative where appropriate (e.g. seeking clarification or advice, negotiating learning contracts, developing grading criteria and rubrics);
- provide constructive feedback on assessment processes and tasks through student feedback mechanisms (e.g. student surveys, suggestions for future offerings, student representation on committees);
- ensure that their work is their own; and
- be familiar with University policy and College procedures and act in accordance with those policy and procedures.

Submission of Assessment Tasks

Assessments must be submitted in accordance with instructions provided in this unit guide. Assessment tasks which have not been submitted as required will not be marked; they will be considered a non-submission and zero marks will be awarded for the task.

Extensions & Late Submissions

Extensions will only be granted as a result of a Disruptions to Studies Notification for which special consideration has been awarded. To apply for an extension of time for submission of an assessment item, students must submit their Disruptions to Studies notification via ask.mq.edu.au.

Late submissions without an approved extension are possible but will be penalised at 20% per 24 hour period or thereof up to 4 days (weekend inclusive).

Example: An assignment is due at 5:00 pm on a Friday and is marked out of 100 marks.

- If a student submits at 5:02 pm on the Friday and no Disruptions to Studies or special consideration is granted, a penalty of 20% of the total marks possible (20 marks) will be deducted from their result.
- If the student submits the assignment on Sunday and no Disruptions to Studies or special consideration is granted, then a penalty of 40% (40 marks) will be deducted and so on.
- If a student submits an assessment task 5 or more days after the due date and no Disruptions to Studies or special consideration is granted, a record or submission will be made but the student will receive zero marks for the assessment task.

Where a student has been granted an extension and submits late, late penalties will be applied following the due date.

Please see “In class assessment” section for further information on in class assessments.

Retention of Originals

It is the responsibility of the student to retain a copy of any work submitted. Students must produce these documents upon request. Copies should be retained until the end of the grade appeal period each term.

In the event that a student is asked to produce another copy of work submitted and is unable to do so, they may be awarded zero (0) for that particular assessment task.
Requests for original documentation will be sent to the applicant’s student email address within six (6) months of notification by the student. Students must retain all original documentation for the duration of this six (6) month period and must supply original documents to the University within ten (10) working days of such a request being made.

In Class Assessment

Where an assessment is to be held or submitted a scheduled lesson, students must be ready to submit, present or sit the assessment task at the start of the lesson, however not all assessments may commence at the beginning of the lesson. No additional time or adjustment will be made for late arriving students or students not ready to submit an assessment at the start of the lesson and late penalties may apply.

For example, if a one hour test or quiz is due to take place in a three hour lesson, the test or quiz may start at any time in the first two hours, so students must be ready to take the test at the beginning of the lesson. No additional time will be given to or adjustment made for students who arrive late. While they may still be permitted to take the test, deepening on the task, the student will have only the remaining time to complete the task. Similarly, where an assessment task is due in a given lesson, late penalties may apply to a student who submits the task at the end of the lesson, depending on submission instructions for the task.

Final Examinations

The final examination period is from Thursday Week 6 until Monday of Week 7, including the weekend. This means that examinations and assessments may be held/due on the Saturday during the final examination period and students must be available to take exams and submit assessments on this day. For unit specific details please refer to the Assessment section of this unit guide.

The University will publish the [College Final Examination Timetable](https://unitguides.mq.edu.au/unit_offerings/79348/unit_guide/print) at least 4 weeks before the commencement of the final examination period and students will be able to access their final examination schedule in Week 3 of the Term.

Final Examination Requirements

Schedule 4 of the Assessment Policy explains what students are responsible for:

- checking the final examination timetable
- knowing the examination location (including seat number allocation) and arriving at allocated examination venue on time.
- knowing the structure and format of the examination
- adhering to the final examination timetable
- ensuring they are available for the full duration of the final examination period and supplementary examination period.

Details of the structure and format of the final examination paper will be made available to students via iLearn prior to the start of the final examination period. This detail will include:

- a copy of the examination coversheet, giving the conditions under which the examination
will be held

• information on the types of questions the examination will contain, and
• an indication of the unit content the paper may examine.

Students must follow directions given by the Final Examination Supervisor.

Students will be required to present their Macquarie University Campus Card as photographic proof of identity for the duration of the final examination.

Students are not permitted to:

• enter a final examination venue once one hour from the time of commencement (excluding any reading time) has elapsed
• leave a final examination venue before one hour from the time of commencement (excluding any reading time) has elapsed
• leave a final examination venue during the last 15 minutes of the examination
• be readmitted to a final examination venue unless they were under approved supervision during the full period of their absence
• obtain, or attempt to obtain, assistance in undertaking or completing the final examination script
• receive, or attempt to receive, assistance in undertaking or completing the final examination script (Unless an application for reasonable adjustment has been approved)
• communicate in any way with another student once they have entered the final examination venue

Missed assessments and examinations

The University recognises that students may experience unexpected events and circumstances that adversely affect their academic performance in assessment activities, for example illness.

In order to support students who have experienced a serious and unavoidable disruption, the University will provide affected students with an additional opportunity to demonstrate that they have met the learning outcomes of a unit. An additional opportunity provided under such circumstances is referred to as special consideration.

In order to be eligible for special consideration students must submit a Disruption to Studies Notification via ask.mq.edu.au within five (5) working days of the commencement of the disruption and attach appropriate supporting evidence.

Where special consideration is granted the student will be given an additional opportunity to demonstrate that they have met the learning outcomes of a unit in the form of an alternative or supplementary assessment task or extension.

Please refer to the Disruptions to Studies section under Policies and Procedures below.

Supplementary Tests and Examinations
Where a student has been granted a supplementary test or examination as a result of a disruption to studies, they will be advised of the time, date and location for the supplementary task.

Supplementary interim assessments will be held throughout the term with default dates for sitting being as follows:

- Week 3: Wednesday AND/OR Friday
- Week 5: Wednesday AND/OR Friday
- Week 7: Thursday

The supplementary final examination period will span from Thursday Week 6 until Friday Week 1 of the subsequent teaching term. Students who have lodged a Disruptions to Studies must be available to undertake examinations during the supplementary examination period.

For each assessment task affected by a disruption event, there will be a limit of one extra assessable task or remedy applied. If a further event affects the student’s ability to partake in this assessment activity (i.e. a student cannot undertake the additional or supplementary assessment task as scheduled) the student will need to proceed with the grading of the original attempt or submit a further Disruption notification which would be assessed for a Withdrawal without Academic Penalty outcome.

Results for supplementary final examinations may not be available for up to two weeks following the supplementary examination. Students in their final term of study who undertake supplementary final exams and students who apply for special consideration for a unit which is a prerequisite to another unit in their program should note that formal completion of their Program will not be possible until supplementary results are released and this may impact on their ability to enrol in subsequent programs of study on time.

Accessing your Results

Students will be able to view their results for internal assessments via the Grades section in **iLear n**.

Grades (e.g. HD, D, CR, P, F) for all assessment tasks will be released to students once marking has concluded. Marks for individual assessments may be released as well.

Final results for the unit will be released at 00:01 on Friday of Week 7. Students will be able to view their final result for the unit via **eStudent**.

Calculating your GPA

A Grade Point Average (GPA) is a calculation that reflects the overall grades of a student in a coursework program. Please refer to the **GPA Calculator**.

Obtaining Feedback

Teaching staff will provide students with feedback about their academic progress and performance in assessment tasks or a unit of study. Where relevant, other staff such as Senior
Teachers, Program Managers and members of the Student Administration and Services Team will provide feedback and advice to students about their performance in a program of study. Feedback may be provided to individual students, a group of students or a whole class and it may be written or verbal in nature.

Some examples of feedback include:

- Teaching staff member reviewing a draft submission and giving a student advice on how to improve their work before making a final submission
- Teaching staff member telling a class that they need to improve their editing of grammar in their recently submitted assignment.
- Teaching staff member discussing progress of an individual student before census date to allow the student to decide whether they should remain enrolled in the unit.
- Online feedback via announcements or forums, an online marking rubric or various iLearn activities employed in a unit
- Written marks and comments on a marking sheet or essay.

Recorded voice comment provided in response to an essay submitted online.

- A student receiving advice that they should consider withdrawing from a unit because they have missed too many classes / too much work to be able to catch up or for other reasons.

It is a student’s responsibility to:

- Attend sessions, be present and actively engaged during times when feedback is provided in scheduled class times.
- If absent from an in-class feedback session due to unavoidable circumstances, organise an alternative time with the teacher so that they can receive their feedback
- Ensure that they have received sufficient feedback prior to their next assessment task and/or final assessment in the unit
- Act promptly on feedback provided (e.g. incorporate advice provided into their work and study habits).

If you are unsure how or when feedback has been or will be provided, or you feel that feedback provided is not sufficient, you must approach relevant teaching or administrative staff and request additional feedback in a timely manner during the term and prior to any subsequent assessment task or the final assessment task for the unit. Claims that not enough feedback has been provided are not grounds for a grade appeal, especially where a student has not made any effort to approach staff about obtaining additional feedback in a timely manner. Students may seek general feedback about performance in a unit up to 6 months following results release.

Contacting Teaching Staff Obtaining Help
Students may contact teaching staff at any time during the term by using the contact details provided in this guide. Students should expect a response within 1-2 business days. Teaching staff are unable to accept assessment submissions via email, all assessments must be submitted as outlined in the unit guide.

For all university related correspondence, students must use their official Macquarie University student email account which may be accessed via the Macquarie University Student Portal. Inquiries from personal email accounts will not be attended to.

Academic Honesty

Using the work or ideas of another person, whether intentionally or not, and presenting them as your own without clear acknowledgement of the source is called **plagiarism**. Macquarie University promotes awareness of information ethics through its **Academic Honesty Policy**. This means that:

- all academic work claimed as original must be the work of the person making the claim
- all academic collaborations of any kind must be acknowledged
- academic work must not be falsified in any way
- when the ideas of others are used, these ideas must be acknowledged appropriately

All breaches of the **Academic Honesty Policy** are serious and **penalties** apply. Students should be aware that they may fail an assessment task, a unit or even be excluded from the University for breaching the Academic Honesty Policy.

Turnitin

To uphold principles of Academic Honesty, Macquarie University employs online anti-plagiarism software called **Turnitin**. Turnitin compares electronically submitted papers to a database of academic publications, internet sources and other student papers that have been submitted to the system to identify matching text. It then produces an Originality Report which identifies text taken from other sources, and generates a similarity percentage. Teaching staff will use the report to judge whether plagiarism has occurred and whether penalties should apply for breaches of the Academic Honesty Policy.

All text based assessments must be submitted through Turnitin as per instructions provided in the unit guide. It is the student’s responsibility to ensure that work is submitted correctly prior to the due date. This includes verifying that correct files have been submitted as no special consideration will be given to students who have uploaded incorrect documents. No hard copies of assessments will be accepted and only Turnitin records will be taken as records of submission.

Multiple submissions may be possible via Turnitin **prior** to the final due date and time of an assessment task and originality reports may be made available to students to view and check their work.

There is no set percentage which indicates whether plagiarism has occurred; all identified matching text should be reconsidered carefully. If plagiarism has occurred or is suspected and resubmission is possible prior to the due date, students are advised to edit their work before
making a final submission. Help may be sought from teaching staff. Students may also access research resources provided by the library or Learning Skills.

Students should note that the system will not immediately produce the similarity score on a second or subsequent submission - it will take 24-36 hours for the report to be generated. This may be after the due date so students should plan any resubmissions carefully.

Please refer to these instructions on how to submit your assignment through Turnitin and access similarity reports and feedback provided by teaching staff.

Should you have questions about Turnitin or experience issues submitting through the system, you must inform your teacher immediately. If the issue is technical in nature may also lodge a On eHelp Ticket, refer to the IT help page.

Submission of Drafts through Turnitin.

In some instances students may be required to submit drafts of written work via Turnitin prior to the due date of the assessment task so that they can receive feedback prior to making a final submission. If the student does not make a final submission prior to the due date, their draft will be counted as the final submission or late penalties applied.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Tests</td>
<td>10%</td>
<td>No</td>
<td>Session 2.1 to 6.1</td>
</tr>
<tr>
<td>Assignments</td>
<td>15%</td>
<td>No</td>
<td>Week 4.1 and 6.2</td>
</tr>
<tr>
<td>Practical Exams</td>
<td>35%</td>
<td>No</td>
<td>Week 3.4 and 6.3</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
<td>Yes</td>
<td>MUIC Final Examination Period</td>
</tr>
</tbody>
</table>

Written Tests

Due: Session 2.1 to 6.1

Weighting: 10%

Written tests will be 20-minute paper-based, closed-book tests containing 2 to 3 short programming questions based on the relevant topic. The students will complete the exercises individually in class. Tests conducted in sessions 2.1, 3.1, 4.1, 5.1, and 6.1.

Students are not allowed to use any electronic devices during the tests.

Feedback will be provided in class on the answer booklets.

If students miss a written test, they should refer to the Disruption to Studies section above.

This Assessment Task relates to the following Learning Outcomes:

- Apply problem solving skills to develop algorithms
Unit guide WCOM125 Fundamentals of Computer Science

- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.
- Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Assignments

Due: Week 4.1 and 6.2
Weighting: 15%

In Assignments, students are given a programming task including multiple sub-problems of incremental nature (such that they need to solve one sub-problem before moving on to the next). Students analyse the problem and solve each sub-problem to move on to the "next stage". JUnit tests indicate that their solutions are correct or not, as they implement their solution. Thus, 80% feedback is provided live to them, including where and what the mistake is. 20% marks are for coding style and the feedback for that is provided in the class after the due date.

Assignment 1 will be a programming assignment that will require students to write Java code to meet a set of requirements. The task will help students to practise concepts from session 1.1 to 2.1. Students' code will be assessed via automated tests that will be provided to students. Students will also be marked on code quality and completeness. This task is worth 5%.

Assignment 2 will be a programming assignment that will require students to write Java code to meet a set of requirements. The task will help students to practise concepts from session 2.4 to 4.1. Students' code will be assessed via automated tests that will be provided to them. They will also be marked on code quality and completeness. This task is worth 10%.

Assignments are submitted to links provided in iLearn. These are individual tasks. Further instructions are available in iLearn. Please refer to late submission section above.

This Assessment Task relates to the following Learning Outcomes:
- Apply problem solving skills to develop algorithms
- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.
- Use discipline specific terminology to communicate concepts and ideas relevant to this
Practical Exams

Due: **Week 3.4 and 6.3**
Weighting: **35%**

Practical exams include short programming tasks based on relevant content. Each practical exam is an Eclipse project containing 5 to 8 questions, with JUnit test provided for each question. These are closed-book online exams.

Students are allowed to use javadoc of libraries.

Practical Exam 1 covers course material from session 1.1 to 3.1. This is a 90-minute exam, worth 10% and will be conducted in class in Week 3.4.

Practical Exam 2 covers course material from session 1.1 to 5.1. This is a 90-minute exam, worth 25% and will be conducted in class in Week 6.3.

Instant feedback will be provided through JUnit tests. This is an individual student task.

If students miss a practical exam, they should refer to the Disruption to Studies section above.

This Assessment Task relates to the following Learning Outcomes:
 • Apply problem solving skills to develop algorithms
 • Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
 • Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
 • Compare different methods available to solve the same problem in terms of efficiency and other criteria.

Final Exam

Due: **MUIC Final Examination Period**
Weighting: **40%**

This is a hurdle assessment task (see assessment policy for more information on hurdle assessment tasks)

The Final Exam is a 3 (three) hours plus 10 (ten) minutes, closed book, paper-based, and individual assessment task. It includes a mix of short programming questions and code analysis questions.

The Final exam is a hurdle assessment task. Students must pass the final exam in order to pass the unit. In order to pass the final exam, students must obtain at least 40 out of 100 possible marks (40%). Where students have not obtained the minimum mark required, but have made a serious attempt at this assessment task, they will be given one further opportunity to meet the hurdle requirement. In this unit, a serious attempt is defined as obtaining at least 30% (i.e.
Between 30 and 39 out of the possible 100 marks, inclusive. Where a student is given the additional opportunity and does not attain at least 40% (40/100) they will be deemed not to have met the hurdle requirement and will subsequently not pass the unit.

The final examination period is from Thursday Week 6 until Monday of Week 7, including the weekend. This means that examinations and assessments may be held/due on the Saturday during the final examination period and students must be available to take exams and submit assessments on this day. Details of the structure and format of the final examination paper will be made available to students prior to the start of the final examination period.

Students are not allowed to bring mobile phones and other electronic devices; notes and course materials; dictionaries (paper/electronic); and calculators.

If students miss the final exam, they should refer to the Disruption to Studies section above.

This Assessment Task relates to the following Learning Outcomes:

• Apply problem solving skills to develop algorithms
• Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
• Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
• Compare different methods available to solve the same problem in terms of efficiency and other criteria.
• Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Delivery and Resources

Term Dates & College Calendar

Details of key dates during the term can be found on the Important Dates calendar.

Enrolment and Timetables

General timetable information is available via Macquarie University’s Timetable page.

Students will be able to enrol in units and register for classes via eStudent and also view their personal timetable. It is the student’s responsibility to ensure that classes they have registered for do not clash.

Students are only permitted to attend classes in which they have registered via eStudent, unless they have written approval from the Students Services and Administration Manager. To seek approval, students must email muic@mq.edu.au or speak to a member of the Student Services and Administration Team at E3A Level 2 Reception. Approval will only be granted in exceptional circumstances.

Swapping groups is not possible after the enrolment period has concluded. The last day to do so
is Tuesday of Week 1 and this must be finalised by the student in eStudent by the end of the day.

Attendance Requirements – All Students

All students are expected to attend 100% of scheduled class time.

Attendance will be monitored in each lesson & students will be able to see their current attendance percentage to date and potential attendance percentage for each unit they have enrolled in via iLearn.

- **Current attendance Percentage** will reflect the percentage of classes a student has attended so far (based only on the lessons held to date).
- **Potential Attendance Percentage** will reflect the percentage of classes a student can potentially attend by the end of the term, taking into consideration lessons attended and assuming the student also attends all future lessons scheduled (based only on the total number of lessons in the Term).

Where a student is present for a part of a lesson (for example arrives late, leaves early, leaves the class frequently or for lengthy periods, engages in inappropriate or unrelated activities or does not participate actively in the majority of the lesson) the teacher reserves the right to mark a student absent for that part of the lesson.

In cases of unavoidable non-attendance due to illness or circumstances beyond their control, students should lodge a Disruption to Studies Notification via ask.mq.edu.au within 5 working days and supply relevant supporting documentation, even if they have not missed a formal assessment task. This will ensure that that appropriate records of unavoidable absences can be kept.

Public Holidays and Make-up Lessons

If any scheduled class falls on a public holiday a make-up lesson may be scheduled on an alternate day. In Term 1 2017 Australia Day (26 January) will fall on Thursday of Week 3. If you are registered in a group which has a class on this day, you may expect to have a makeup lesson scheduled on Saturday 21st January or on a weekday in one of the other weeks of the teaching term.

Students should note that they must attend a scheduled make-up class as this forms an integral part of the curriculum. Attendance will be taken for any scheduled make-up lessons. Where a make-up lesson is scheduled, students will be informed in class and via iLearn, usually in the first week of Term and the week prior to the make-up lesson. Students should check their iLearn announcements and student email for details.

If appropriate, teaching staff may instead organise an online make-up lesson requiring students to complete additional activities outside of class. Students will be informed of any such arrangements in class and/or via iLearn.

Technology Used and Required

- Access to internet (Available on Campus using Macquarie OneNet and in designated E3A
Self-Access Computer Laboratories

- **iLab** - iLab is Macquarie University’s personal computer laboratory on the Internet, enabling students to use the Microsoft Windows applications they require to do their university work from anywhere, anytime, on anything.
- Access to **iLearn**
- Access to Macquarie University **Library catalogue (MultiSearch)**
- Access to Microsoft Office Suite (available in E3A Self-Access Computer Laboratories and via **iLab**)

iLearn

iLearn is Macquarie’s online learning management system and a principal teaching and learning resource which will be used throughout the term. Students must access iLearn at least 3 times per week to access important information including:

- Announcements and News Forums - Teaching staff will communicate to the class using iLearn announcements. Announcements may also be emailed to students’ Macquarie University email address but students should check the News Forum regularly.
- Attendance – current and potential attendance percentage for the Term.
- Unit Guide and staff contact details
- Set unit readings available through MultiSearch (library).
- Lesson materials and recordings where available
- Learning and teaching activities and resources, questions and solutions
- Assessment instructions, questions, marking criteria and sample tasks
- Assessment submission links such as Turnitin
- Links to support materials and services available at the University
- Evaluation Surveys for the unit

For any resource related iLearn questions contact your teacher. For any technical or support issues using iLearn, please contact the IT helpdesk (Ph. 02 9850 4357) or lodge a ticket using **OneHelp**.

Useful Study Resources

StudyWise is an iLearn resource created by Learning Skills, which is specifically designed to help you to manage your studies, strengthen your study techniques, write effective assignments and improve your English language proficiency. Once you enrol in StudyWISE, you can access it from your iLearn course list under the category "Student Support".

InfoWise will help you improve your research skills by teaching you how to use MultiSearch, decode citations, identifying key search terms and use advanced search techniques.

Lib Guides provide students with links to electronic sources and websites that are good starting points for research in different fields or disciplines.
MultiSearch will connect you to Macquarie University Library and allow you to search library resources, databases, unit readings and past exam papers.

Academic Language and Learning Workshops are designed to help you with Study Skills, Assignment Writing, Referencing and Academic Language.

Research resources provide information about:

- Researching for your assignments
- How to manage your references
- Referencing style guides
- Subject and research guides

Numeracy Support is provided by the Numeracy Centre. Students who can attend these support classes on a drop in basis as required.

Unit Schedule

The four modules in WCOM125 are,

1. Classes and objects (CO)
2. Searching and sorting (SS)
3. Recursion and time complexity (RTC)
4. Data structures (DS)

Note that three important themes will pervade the entire unit:

1. Problem solving. A crucial skill for all of the weekly topics will be to write appropriate code to meet a given problem specification. This theme relates to the first two learning outcomes for this unit.
2. Software development. Use of the Java JUnit testing framework is an important development practice which will be taught from the beginning, and used throughout the unit. This theme relates to the third learning outcome of this unit.
3. Comparing different solution methods. Very often different algorithms are available for the same problem. Another important skill to develop throughout this unit is the ability to compare different algorithms in terms of efficiency and other criteria. This theme relates to the fourth learning outcome of this unit.

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
<th>Learning objectives</th>
<th>Learning outcomes addressed</th>
<th>Resources required (textbook readings)</th>
<th>Assignment dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Title</td>
<td>Description</td>
<td>Pages</td>
<td>Weekly Exercise</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>1.1/1.2</td>
<td>Introduction to the Unit</td>
<td>Introduce the java programming language, compiler, and program structure.</td>
<td>1, 2, 3, 4</td>
<td>Chapters 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>1.3/1.4</td>
<td>Classes and objects - 1</td>
<td>Introduce the notion of object-oriented programming, designing a class, unified modelling language, and class implementation</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 4</td>
<td></td>
</tr>
<tr>
<td>2.1/2.2</td>
<td>Classes and objects - 2</td>
<td>Extend class implementation to include compareTo, equals. Interaction between objects is also discussed.</td>
<td>1, 2, 3, 4, 5</td>
<td>Weekly exercise 1</td>
<td></td>
</tr>
<tr>
<td>2.3/2.4</td>
<td>Searching algorithms, Time complexity - 1 Pre-Census Feedback</td>
<td>Explore different searching algorithms and their time complexity</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 6.2</td>
<td></td>
</tr>
<tr>
<td>3.1/3.2</td>
<td>Sorting algorithms, Time complexity - 2</td>
<td>Explore different sorting algorithms and their time complexity</td>
<td>1, 2, 3, 4, 5</td>
<td>Pages 420-423 Weekly exercise 2</td>
<td></td>
</tr>
<tr>
<td>3.3/3.4</td>
<td>Recursion</td>
<td>Discuss the concept of recursion and scenarios in which it is preferred over iterative solutions.</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 11 Practical Exam 1 (3.4)</td>
<td></td>
</tr>
<tr>
<td>4.1/4.2</td>
<td>Containers</td>
<td>Introduce the concept of a container, compare an array-based list vs. a linked-list. Introduce the ArrayList class and demonstrate the features it provides.</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 14.1 Assignment 1 due (4.1) Assignment 2 released, Weekly exercise 3</td>
<td></td>
</tr>
<tr>
<td>4.3/4.4</td>
<td>Linked lists</td>
<td>Introduce the LinkedList class and provide a comparison against ArrayList class in implementation. Demonstrate how a linked list class is designed.</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 15.1</td>
<td></td>
</tr>
<tr>
<td>5.1/5.2</td>
<td>Stacks</td>
<td>Describe stacks as an abstract data type. Discuss the situations in which it is useful and demonstrate some practical applications of stacks.</td>
<td>1, 2, 3, 4, 5</td>
<td>Chapter 15.4 (Pages 887 - 891) Weekly exercise 4</td>
<td></td>
</tr>
<tr>
<td>5.3/5.4</td>
<td>Time complexity and File input output</td>
<td></td>
<td>1, 2, 3, 4, 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1/6.2</td>
<td>Review - 1</td>
<td></td>
<td>1, 2, 3, 4, 5</td>
<td>Weekly exercise 5 Assignment 2 due (6.2)</td>
<td></td>
</tr>
</tbody>
</table>
Learning and Teaching Activities

Lessons

Lessons will include a mixture of learning and teaching activities. New content and topics will be presented in lessons, and students will be given problems, practice questions and other interactive activities to apply the knowledge and the skills gained in the lesson. Students will be required to take notes, complete set class tasks and engage in discussion and individual and group activities. In class, specific time may be dedicated to work on assessment tasks and students will be given guidance and feedback to complete these. Certain lessons may be dedicated to independent research and reading related to the unit whether in the classroom or a computer lab.

Active Participation

Students will be required to not only attend but also actively participate in lessons. Active participation entails: - active engagement in class activities - contribution to class discussions by asking and answering questions - coming to class prepared and having completed required pre-readings and activities - completion of set class and homework activities - collaboration with other students - adhering to Macquarie University Student Codes of Conduct

Policies and Procedures

Macquarie University policies and procedures are accessible from Policy Central. Students should be aware of the following policies in particular with regard to Learning and Teaching:

Academic Honesty Policy http://mq.edu.au/policy/docs/academic_honesty/policy.html

In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.
Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Academic Honesty

Using the work or ideas of another person, whether intentionally or not, and presenting them as your own without clear acknowledgement of the source is called **Plagiarism**.

Macquarie University promotes awareness of information ethics through its **Academic Honesty Policy**. This means that:

- all academic work claimed as original must be the work of the person making the claim
- all academic collaborations of any kind must be acknowledged
- academic work must not be falsified in any way
- when the ideas of others are used, these ideas must be acknowledged appropriately.

All breaches of the **Academic Honesty Policy** are serious and **penalties** apply. Students should be aware that they may fail an assessment task, a unit or even be excluded from the University for breaching the Academic Honesty Policy.

Assessment Policy

Students should familiarise themselves with their responsibilities under the **Assessment Policy**, and notably Schedule 4 (Final Examination Requirements).

Disruptions to studies

The **Disruption to Studies Policy** applies only to **serious and unavoidable** disruptions that arise after a study period has commenced. Students with a pre-existing disability/health condition or prolonged adverse circumstances may be eligible for ongoing assistance and support. Such support may be sought through Campus Wellbeing and Support Services.

To be eligible for Special Consideration, a student must notify the University of a **serious and unavoidable** disruption within five (5) working days of the commencement of the disruption (Disruption to Studies notification). All Disruption to Studies notifications are to be made online via the University’s Ask MQ system. A Disruption to Studies notification must be supported by documentary evidence.

Students should note that in cases of medical disruptions they must see a professional authority as outlined in the **Disruptions to Studies Supporting Evidence Schedule** and present a **Professional Authority Form**. The PAF is the preferred form of evidence for medical/psychological /mental health disruptions. However, health documents that clearly indicate the duration and specific...
nature of impact on studies will also be considered as evidence. Overseas students may use their OSHC insurance for the purpose of seeing a registered healthcare professional.

In submitting a Disruption to Studies Notification, a student is acknowledging that they may be required to undertake additional work. The time and date, deadline or format of any required extra assessable work as a result of a disruption to studies notification is not negotiable and in submitting a disruption to studies notification, a student is agreeing to make themselves available to complete any extra work as required. This means that as a result of special consideration being awarded, a student may be required to complete a different type of assessment for example an exam instead of a presentation or vice versa.

Macquarie University operates under a ‘Fit to Sit’ model. This means that in sitting an exam and/ or in-class test or otherwise submitting an assessment, a student declares themselves fit to do so. Therefore, if a student is feeling unfit to sit the exam or test, or otherwise submit the assessment (as the case may be), they should not do so. If a student sits an exam or test, or otherwise submits an assessment, knowing that they are unfit to do so, they will not be granted Special Consideration.

It is the responsibility of the student to determine whether they are fit to sit an examination or test or otherwise submit an assessment, or whether a Disruption to Studies claim should be submitted for non-participation.

The student will retain all original documentation submitted regarding the disruption, and must understand that this may be requested by the University at any time. In this event, students will be provided 10 business days to submit the original documentation.

Please refer to the Disruption to Studies Policy for further details.

Final Examination Script Viewings

A student may request to view their final examination script once results have been released but scripts remain the property of Macquarie University.

Students should view their final examination paper prior to submitting a grade appeal, if this is relevant to their case. The viewing will be conducted in a secure location under supervision.

To request a final examination script viewing, please email: muic@mq.edu.au and write ‘script viewing’ in the subject heading.

Scripts may be reviewed for up to 6 months following the results release date for the relevant Term.

Grade Appeals

A student who has been awarded a final grade for a unit has the right to appeal that grade as outlined in the Grade Appeal Policy. Grade appeals apply to the final mark and grade a student receives for a unit of study. They do not apply to results received for individual assessment tasks.

Grade appeals must be submitted via ask.mq.edu.au within 20 working days from the published result date for the relevant unit. Before submitting a Grade Appeal, please ensure that you read the Grade Appeal Policy and note valid grounds for appeals.
Students are expected to seek feedback on individual assessment tasks prior to the award of a final grade. Students also have the right to request generic feedback from the teaching staff on their overall performance in the unit, including in a final examination. This can be done at any time in the six month period starting from the day on which the final grade of the relevant unit is published.

Course Progression

The College closely monitors Foundation students' academic progress as per the Progression Policy for Programs delivered by Macquarie University International College.

To maintain Satisfactory Academic Progress, a student must successfully complete (pass) 50% or more of their enrolled units in a Term of study. To successfully complete a unit, students must obtain a passing grade and meet any other requirements to pass listed in the unit guide.

Students who fail to make Satisfactory Academic Progress will be classified as "at risk" and will be notified in writing. At-risk students may be required to undergo academic counselling, undertake certain initiatives or have conditions placed upon their enrolment to help them make satisfactory progress.

Students must also pass 50% or more of the units in 2 or more terms in order to meet Minimum Rate of Progress (MRP) requirements. A student is deemed not to be making Minimum Rate of Progress if they fail more than 50% of their enrolled units in two consecutive Terms of study, or if they have failed more than 50% of their units after studying two or more terms.

Any domestic student who has been identified as not meeting Minimum Rate of Progress requirements will be issued with an Intention to Exclude letter and may subsequently be excluded from the program.

Any international student who has been identified as not meeting MRP will be subject to exclusion from the program and be issued with an Intention to Report letter and may subsequently be reported to the Department of Immigration and Border Protection (DIBP) for not meeting visa requirements. International students must comply with the Progression Policy of the College in order to meet the conditions of their visa.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser
Critical, Analytical and Integrative Thinking

We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes

- Apply problem solving skills to develop algorithms
- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.

Assessment tasks

- Assignments
- Practical Exams
- Final Exam

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing
data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Apply problem solving skills to develop algorithms
- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.
- Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Assessment tasks

- Written Tests
- Assignments
- Practical Exams
- Final Exam

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- Apply problem solving skills to develop algorithms
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Assessment tasks

- Written Tests
- Assignments
Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcome

- Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Assessment task

- Final Exam

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:
Learning outcomes

- Apply problem solving skills to develop algorithms
- Implement programs (from algorithms), showing an understanding of the underlying architecture of the computer
- Adhere to standard software engineering practices (in particular documentation using Javadoc, testing using JUnit framework and debugging using Eclipse debugger)
- Compare different methods available to solve the same problem in terms of efficiency and other criteria.
- Use discipline specific terminology to communicate concepts and ideas relevant to this unit

Assessment tasks

- Written Tests
- Assignments
- Practical Exams
- Final Exam

Course Contact Hours

Weekly face to face contact for this unit will be 11 hours (66 hours per term).

There will be 4 lessons per week consisting of 3 X 3 hour lessons and 1 X 2 hour lesson in the MUIC PC Laboratory.

Unit Specific Texts and Materials

The following text has been prescribed for this unit.

Texts will be available for purchase from the Co-Op Bookshop located in the Campus Hub Building C10A, Level One, Phone: 8986 4000.

All students should ensure that they have access to the prescribed text(s) from the start of the Term as failure to do so could jeopardise their academic progress in this unit.

Other editions or formats of the above resource(s) may be acceptable, but you must students must consult teaching staff prior to purchasing these.

The following books are helpful references:

- B. Eckel, Thinking in Java (electronic book, 3rd edition available within iLearn is fine and
Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/01/2017</td>
<td>The Australia Day Public Holiday make-up classes have been rescheduled.</td>
</tr>
</tbody>
</table>

is free but does not cover data structures)

- A. Drozdek, *Data Structures and Algorithms in Java* (Cengage) 2nd edition. ISBN 9780534492526 (this book will also be used in COMP225)
- D. Carlson, *Eclipse Distilled* (Addison-Wesley) 1st edition. ISBN 9780321288158 (extensive coverage of the software development platform eclipse)