Contents

General Information .. 2
Learning Outcomes .. 3
General Assessment Information 3
Assessment Tasks ... 3
Delivery and Resources ... 5
Unit Schedule .. 7
Policies and Procedures ... 7
Graduate Capabilities ... 9
Changes from Previous Offering 14
Standards expectations ... 14
Student Liaison Committee 15
Changes since First Published 16

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication [or the relevant faculty or department] before acting on any information in this publication.
General Information

Unit convenor and teaching staff
Unit Convenor
Mark Wardle
mark.wardle@mq.edu.au
Contact via mark.wardle@mq.edu.au
E6B 2.702

Lecturer
Quentin Parker
quentin.parker@mq.edu.au
Contact via quentin.parker@mq.edu.au
E6B 2.703

Credit points
3

Prerequisites

Corequisites

Co-badged status

Unit description
This unit explores our solar system and the newly found planetary systems around other suns. We begin by examining the processes that have shaped the marvellous variety of worlds within our own solar system, from the scorched and buckled surface of Mercury, to the geysers of frozen methane on Neptune's largest moon, Triton. From this we build an understanding of how our solar system formed and subsequently evolved to become the system that we inhabit today. We then turn our attention to the ongoing discovery of a startling variety of planets around other stars and the advanced observing techniques employed. These provide a new and challenging perspective on our place in the Universe that is modifying the scientific theories of how generic planetary systems are formed. The unit highlights breaking news as the unit proceeds. As part of this unit there is the opportunity to observe the planets with the telescopes of the Macquarie University Observatory.

Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://www.mq.edu.au/study/calendar-of-dates
Learning Outcomes
On successful completion of this unit, you will be able to:

- How science advances though observation - the scientific method.
- The content of our Solar System and how we have learned about it over time.
- Comparative planetology - how differences between planets tell us the origin of our Solar System.
- What physical processes are in action on Earth and in our Solar System.
- How we think our Solar System was born.
- What we know of planets around stars other than the Sun.
- How extra-solar planets give us a new view of our own Solar System.

General Assessment Information
All assessment tasks are to be submitted via iLearn before 7pm on the appropriate due date.

Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>20%</td>
<td>See below</td>
</tr>
<tr>
<td>Moon Practical</td>
<td>15%</td>
<td>12 September 2014</td>
</tr>
<tr>
<td>1000-word essay</td>
<td>10%</td>
<td>17 October 2014</td>
</tr>
<tr>
<td>Concept Video</td>
<td>15%</td>
<td>7 November 2014</td>
</tr>
<tr>
<td>Final Examination</td>
<td>40%</td>
<td>University Examination Period</td>
</tr>
</tbody>
</table>

Assignments
Due: See below
Weighting: 20%

There will be 4 multichoice assignments based on lecture material, worth a total of 20%. They are to be completed online, within iLearn, by the following due dates.

Assignment 1 - Friday 22 August 2014 (end of Week 3)
Assignment 2 - Friday 19 September 2014 (end of Week 7)
Assignment 3 - Friday 24 October 2014 (end of Week 10)
Assignment 4 - Friday 14 November 2014 (end of Week 13)

On successful completion you will be able to:
• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Moon Practical
Due: **12 September 2014**
Weighting: **15%**

The practical consists of an instruction sheet and a chart of the Sky where you will be plotting the position and phase of the Moon. Instructions and chart will be available on iLearn. The practical consists of two parts. The first is a set of observations that you will carry out by going outside in the early evening, and observing the position, phase, and orientation of the Moon. **Your observations must be conducted between between 25 August and 8 September**, corresponding to the period between New Moon and Full Moon.

Your completed sky map is to be scanned or photographed and submitted to the iLearn system in jpeg or pdf format. If you miss the observational window of 25 Aug – 8 Sept you will lose the marks associated with this exercise. The second part of the exercise consists of answering related quiz questions online.

On successful completion you will be able to:
• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• What physical processes are in action on Earth and in our Solar System.

1000-word essay
Due: **17 October 2014**
Weighting: **10%**

Students will write a 1000-word essay addressing society’s response to climate change. The essay should be weighted towards an in-depth discussion of one or two ethical issues within this broad area.

On successful completion you will be able to:
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
System.

• What physical processes are in action on Earth and in our Solar System.
• How extra-solar planets give us a new view of our own Solar System.

Concept Video
Due: 7 November 2014
Weighting: 15%

Each student will work to create a 2 minute video explaining a concept of relevance to the unit chosen from a list of potential topics.

On successful completion you will be able to:

• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.

Final Examination
Due: University Examination Period
Weighting: 40%

A three-hour final exam consisting of multichoice and short-answer questions will take place in the exam period of semester 2. No material will be allowed in the exam room.

On successful completion you will be able to:

• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Delivery and Resources
Lectures vs External mode

This unit is offered in S2, in Day and External modes. The only difference between these modes
is that students enrolled in the external mode are not formally entitled to attend lectures. The lectures will be recorded and available on line along with the slides and there will be other supporting material including chat rooms and a forum on-line so this should not be a disadvantage. This year, there should be enough room in the lecture theatres so that students enrolled in the "External" are also welcome to attend lectures. If this changes, an iLearn announcement will be made.

Class times (Day mode only)
Lectures 1&2 Wednesday 3-5pm, W6D Lotus Theatre
Lecture 3 Friday 3-4pm, W2.4A Macquarie Theatre

Required and Recommended Texts and/or Materials

A list of recommended readings and web links will be provided as needed, and there is a wealth of supporting material available on the internet.

Technology Used and Required

Extensive use will be made of iLearn, both to deliver content and assessment materials, as well as to collect assessment. Students will therefore need pc and internet access. The concept video assessment requires access to a smart phone / tablet / digital camera / pc or similar device with movie recording capabilities. Alternative arrangements will be made for students without access to one of these.

Teaching and Learning Strategy

This unit is taught through lectures, on-line tutorials and live chatrooms and through undertaking one field experiment. We strongly encourage students to attend lectures because they provide a much more interactive and effective learning experience than studying a textbook, or listening to iLectures. However, this unit has been developed so as to enable it to be taken remotely. As such it is possible to take it with no lecture attendance. Questions during the lectures, on the forums or during chat rooms with moderators are strongly encouraged in this unit. You should aim to read the relevant sections of the textbook before and after lectures and discuss the content with classmates.

You may wish to discuss your essays and other assessment with other students, but you are required to hand in your own work (see the note on plagiarism below). Several assignments are provided as one of the key learning activities for this unit, they are not there just for assessment. It is by applying knowledge learned from lectures and textbooks to solve problems...
that you are best able to test and develop your skills and understanding of the material.

Lectures will be presented using a data projector, with copies of the slides will be made available through iLearn. Lectures will be recorded and magically appear on the iLearn system.

Unit Schedule

Lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecturer</th>
<th>Topics</th>
<th>Chapters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Quentin</td>
<td>Introduction, orienting yourself in the night sky</td>
<td>1, 2</td>
</tr>
<tr>
<td>Week 2</td>
<td>Quentin</td>
<td>The Sun, the Moon and the planets: overview, the early observers and the Scientific Method</td>
<td>3, 4</td>
</tr>
<tr>
<td>Week 3</td>
<td>Quentin</td>
<td>The Earth and the Moon</td>
<td>7, 9, 10</td>
</tr>
<tr>
<td>Week 4</td>
<td>Mark</td>
<td>Terrestrial planets: Mercury, Venus and Mars</td>
<td>11</td>
</tr>
<tr>
<td>Week 5</td>
<td>Mark</td>
<td>Terrestrial planets 2; climate change</td>
<td>11</td>
</tr>
<tr>
<td>Week 7</td>
<td>Mark</td>
<td>Moons and rings</td>
<td>12.8-12.11, 13, 14.6-14.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mid-Semester Break</td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Mark</td>
<td>Meteorites, asteroids, comets</td>
<td>15</td>
</tr>
<tr>
<td>Week 9</td>
<td>Mark</td>
<td>Formation and evolution of the solar system</td>
<td>18*, 8.1-8.6</td>
</tr>
<tr>
<td>Week 10</td>
<td>Mark</td>
<td>Formation and evolution of the solar system 2</td>
<td>18*, 8.1-8.6</td>
</tr>
<tr>
<td>Week 11</td>
<td>Quentin</td>
<td>Extrasolar planets</td>
<td>4, 5, 6 as needed, 8.7</td>
</tr>
<tr>
<td>Week 12</td>
<td>Quentin</td>
<td>Extrasolar planets 2</td>
<td>4, 5, 6 as needed, 8.7</td>
</tr>
<tr>
<td>Week 13</td>
<td>Quentin</td>
<td>Life in the universe</td>
<td>27</td>
</tr>
</tbody>
</table>

Chapters refer to those in either of the recommended books. The small amount of material in Chapter 18 (not in the "Solar System" book) will have equivalent iLearn readings.

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](http://mq.edu.au/policy/docs/academic_honesty/policy.html).

Students should be aware of the following policies in particular with regard to Learning and Teaching:

Disruption to Studies Policy http://www.mq.edu.au/policy/docs/disruption_studies/policy.html The Disruption to Studies Policy is effective from March 3 2014 and replaces the Special Consideration Policy.
In addition, a number of other policies can be found in the Learning and Teaching Category of Policy Central.

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/support/student_conduct/

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

- Workshops
- StudyWise
- Academic Integrity Module for Students
- Ask a Learning Adviser

Student Services and Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.

Student Enquiries

For all student enquiries, visit Student Connect at ask.mq.edu.au

IT Help

For help with University computer systems and technology, visit http://informatics.mq.edu.au/help/.

When using the University’s IT, you must adhere to the Acceptable Use Policy. The policy applies to all who connect to the MQ network including students.
Graduate Capabilities

Capable of Professional and Personal Judgement and Initiative

We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes

- How science advances through observation - the scientific method.
- The content of our Solar System and how we have learned about it over time.
- Comparative planetology - how differences between planets tell us the origin of our Solar System.
- What physical processes are in action on Earth and in our Solar System.
- How we think our Solar System was born.
- What we know of planets around stars other than the Sun.
- How extra-solar planets give us a new view of our own Solar System.

Assessment tasks

- 1000-word essay
- Concept Video

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Learning outcomes

- How science advances through observation - the scientific method.
- The content of our Solar System and how we have learned about it over time.
- Comparative planetology - how differences between planets tell us the origin of our Solar System.
- What physical processes are in action on Earth and in our Solar System.
- How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment task
• 1000-word essay

Discipline Specific Knowledge and Skills
Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes
• How science advances through observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment tasks
• Assignments
• Moon Practical
• Concept Video
• Final Examination

Critical, Analytical and Integrative Thinking
We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:
Learning outcomes

• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment tasks

• Assignments
• Moon Practical
• 1000-word essay
• Concept Video
• Final Examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment tasks

• Assignments
• Moon Practical
Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Learning outcomes

- How science advances though observation - the scientific method.
- The content of our Solar System and how we have learned about it over time.
- Comparative planetology - how differences between planets tell us the origin of our Solar System.
- What physical processes are in action on Earth and in our Solar System.
- How we think our Solar System was born.
- What we know of planets around stars other than the Sun.
- How extra-solar planets give us a new view of our own Solar System.

Assessment tasks

- Moon Practical
- 1000-word essay
- Concept Video
- Final Examination

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- How science advances though observation - the scientific method.
- The content of our Solar System and how we have learned about it over time.
- Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment tasks
• 1000-word essay
• Concept Video
• Final Examination

Engaged and Ethical Local and Global citizens
As local citizens our graduates will be aware of indigenous perspectives and of the nation’s historical context. They will be engaged with the challenges of contemporary society and with knowledge and ideas. We want our graduates to have respect for diversity, to be open-minded, sensitive to others and inclusive, and to be open to other cultures and perspectives: they should have a level of cultural literacy. Our graduates should be aware of disadvantage and social justice, and be willing to participate to help create a wiser and better society.

This graduate capability is supported by:

Learning outcomes
• How science advances though observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment task
• 1000-word essay

Socially and Environmentally Active and Responsible
We want our graduates to be aware of and have respect for self and others; to be able to work with others as a leader and a team player; to have a sense of connectedness with others and country; and to have a sense of mutual obligation. Our graduates should be informed and active participants in moving society towards sustainability.

This graduate capability is supported by:
Learning outcomes

• How science advances through observation - the scientific method.
• The content of our Solar System and how we have learned about it over time.
• Comparative planetology - how differences between planets tell us the origin of our Solar System.
• What physical processes are in action on Earth and in our Solar System.
• How we think our Solar System was born.
• What we know of planets around stars other than the Sun.
• How extra-solar planets give us a new view of our own Solar System.

Assessment task

• 1000-word essay

Changes from Previous Offering

In 2014 the concept mapping exercise of previous years has been replaced by the concept video assessment.

Standards expectations

Academic Senate has deemed that the grades correspond to the following broad performance expectations:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Mark %</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>High Distinction 85-100%</td>
<td>Denotes performance that meets all unit objectives in such an exceptional way and with such marked excellence that it deserves the highest level of recognition.</td>
</tr>
<tr>
<td>D</td>
<td>Distinction 75-84%</td>
<td>Denotes performance that clearly deserves a very high level of recognition as an excellent achievement in the unit.</td>
</tr>
<tr>
<td>Cr</td>
<td>Credit 65-74%</td>
<td>Denotes performance that is substantially better than would normally be expected of competent students in the unit.</td>
</tr>
<tr>
<td>P</td>
<td>Pass 50-64%</td>
<td>Denotes performance that satisfies unit objectives.</td>
</tr>
<tr>
<td>F</td>
<td>Fail 0-49%</td>
<td>Denotes that a candidate has failed to complete a unit satisfactorily</td>
</tr>
</tbody>
</table>

An aggregate standard number grade (SNG) corresponding to a pass (P) is required to pass this unit.
Some guidance on the qualitative distinctions between the grade levels follows.

Fail: does not provide evidence of attainment of all learning outcomes. There is missing or partial or superficial or faulty understanding and application of the fundamental concepts in the field of study; and incomplete, confusing or lacking communication of ideas in ways that give little attention to the conventions of the discipline.

Pass: provides sufficient evidence of the achievement of learning outcomes. There is demonstration of understanding and application of fundamental concepts of the field of study; and communication of information and ideas adequately in terms of the conventions of the discipline. The learning attainment is considered satisfactory or adequate or competent or capable in relation to the specified outcomes.

Credit: provides evidence of learning that goes beyond replication of content knowledge or skills relevant to the learning outcomes. There is demonstration of substantial understanding of fundamental concepts in the field of study and the ability to apply these concepts in a variety of contexts; plus communication of ideas fluently and clearly in terms of the conventions of the discipline.

Distinction: provides evidence of integration and evaluation of critical ideas, principles and theories, distinctive insight and ability in applying relevant skills and concepts in relation to learning outcomes. There is demonstration of frequent originality in defining and analysing issues or problems and providing solutions, and the use of means of communication appropriate to the discipline and the audience.

High Distinction: provides consistent evidence of deep and critical understanding in relation to the learning outcomes. There is substantial originality and insight in identifying, generating and communicating competing arguments, perspectives or problem solving approaches; critical evaluation of problems, their solutions and their implications; creativity in application.

Student Liaison Committee

The Physics and Astronomy Department values quality teaching and engages in periodic student evaluations of its units, external reviews of its programs and course units, and seeks formal feedback from students via focus groups and the Student Liaison Committee (SLC). Please consider being a member of this committee, which meets once during the semester (lunch provided), with the purpose of improving teaching via student feedback. The class will be asked to nominate two students as representatives for the ASTR178 unit on the Student Liaison Committee. This nomination process will be conducted during lectures and the lecturer will forward the names to the Head of Department. Summaries of the discussion will be reported to the department meetings where decisions on actions will be taken. These summaries will also be reported to the SLC as well as being posted.

The main student comments and responses from the 2013 S2 SLC Committee meeting relevant to ASTR178 were as follows:

- *Some students find the course disjointed.* The number of lecturers has been reduced from 3 to 2 and the material reorganised to improve the flow.
• Students enjoyed the concept maps although this exercise was difficult. Working in large groups could be unmanageable. This exercise has been replaced by the concept video assessment, which does not involve group work.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/08/2014</td>
<td>Corrected lecture times in Delivery and Resources section.</td>
</tr>
</tbody>
</table>