ISYS224
Database Systems
S2 Day 2018
Dept of Computing

Contents

General Information 2
Learning Outcomes 3
General Assessment Information 3
Assessment Tasks 5
Delivery and Resources 7
Unit Schedule 7
Policies and Procedures 8
Graduate Capabilities 10
Changes from Previous Offering 13
Changes since First Published 13

Disclaimer
Macquarie University has taken all reasonable measures to ensure the information in this publication is accurate and up-to-date. However, the information may change or become out-dated as a result of change in University policies, procedures or rules. The University reserves the right to make changes to any information in this publication without notice. Users of this publication are advised to check the website version of this publication (or the relevant faculty or department) before acting on any information in this publication.
General Information

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Email</th>
<th>Contact Method</th>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Convenor, Lecturer</td>
<td>Assoc. Prof. Abhaya Nayak</td>
<td>abhaya.nayak@mq.edu.au</td>
<td>Contact via Email</td>
<td>E6A 382</td>
<td>Friday 2-3pm</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Peter Busch</td>
<td>peter.busch@mq.edu.au</td>
<td>Contact via Email</td>
<td>E6A 320</td>
<td>Wednesday 10-11am</td>
</tr>
<tr>
<td>Tutor</td>
<td>Hedieh Ranjbartabar</td>
<td>hedieh.ranjbartabar@mq.edu.au</td>
<td>Contact via Email</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutor</td>
<td>Nardin Hanna</td>
<td>nardin.hanna@mq.edu.au</td>
<td>Contact via Email</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutor</td>
<td>Jandson Santos</td>
<td>jandson.santos-ribeiro-sant@students.mq.edu.au</td>
<td>Contact via Email</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutor</td>
<td>Bayzid Hossain</td>
<td>bayzid-ashik.hossain@mq.edu.au</td>
<td>Contact via Email</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credit points
3

Prerequisites
ISYS114
Important Academic Dates
Information about important academic dates including deadlines for withdrawing from units are available at https://students.mq.edu.au/important-dates

Learning Outcomes
1. Demonstrate understanding of the basic concepts that underlie modern database management systems.
2. Design and develop small, functional database applications using modern database design methods.
3. Develop skills in using industrial-strength database tools and interactive development environments for building databases.
4. Complete different database programming tasks to specification using SQL.

General Assessment Information
Assessment Tasks Submission/Completion Process
The assessments of this unit consist of two in-class tests, two assignments and a final exam. The solutions to the two assignments should be submitted via iLearn by the due date. The final examination is a closed book examination, and will be taken in person on the appropriate date.

If you receive special consideration for the final exam, a supplementary exam will be scheduled in the week of December 17-21 2018. By making a special consideration application for the final exam you are declaring yourself available for a resit during the supplementary examination period and will not be eligible for a second special consideration approval based on pre-existing commitments. Please ensure you are familiar with the policy prior to submitting an application. Approved applicants will receive an individual notification one week prior to the exam with the exact date and time of their supplementary examination.
Late Submission Policy

Late assignments (not tests) will be accepted up to 48 hours after the submission deadline. There will be a deduction of 20% of the total available marks made from the total awarded mark for each 24 hour period or part thereof that the submission is late (for example, 25 hours late in submission – 40% penalty). This penalty does not apply for cases in which an application for special consideration is made and approved. In such cases a compensating mechanism will be decided on a case by case basis.

Assessment Standards

ISYS224 will be assessed and graded according to the University assessment and grading policies.

The following general standards of achievement will be used to assess each of the assessment tasks with respect to the letter grades.

Pass: Can demonstrate a broad knowledge of database concepts but with limited understanding. Can design and develop functional database with documentation. Is familiar with tools and interactive development environments, and comfortable with database programming.

Credit/Distinction: As for Pass plus: Exhibits breadth and depth of understanding of concepts. Can demonstrate critical analysis skills in fundamental database concepts. Able to design and develop functional and highly maintainable database, with documentation. Very familiar with tools and interactive development environments with good ability to solve database problems. Very familiar with database programming and quite able to implement solutions to database problems.

High Distinction: As for Credit/Distinction plus: Is aware of the context in which the concepts are developed and their limitations. Has demonstrated critical analysis skills in fundamental database concepts who also has exceptional analytical and critical thinking capability. Able to design and develop functional and highly maintainable database, with documentation and familiarity with tools and interactive development environments, and has exceptional ability to solve challenging database problems. Very familiar with tools and interactive development environments, and has exceptional ability to solve challenging database problems. Has exceptional database programming skills and able to implement maintainable solutions to challenging database problems.

Assessment Process

These assessment standards will be used to give a numeric mark to each assessment submission during marking. The mark will correspond to an appropriate letter grade when relevantly weighted. The final mark for the unit will be calculated by combining the marks for all assessment tasks according to the percentage weightings shown in the assessment summary.
Assessment Tasks

<table>
<thead>
<tr>
<th>Name</th>
<th>Weighting</th>
<th>Hurdle</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>5%</td>
<td>No</td>
<td>Week 4 (Wednesday)</td>
</tr>
<tr>
<td>Assignment 1</td>
<td>20%</td>
<td>No</td>
<td>Week 7</td>
</tr>
<tr>
<td>Test 2</td>
<td>5%</td>
<td>No</td>
<td>Week 10 (Wednesday)</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>20%</td>
<td>No</td>
<td>Week 11</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
<td>No</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Test 1

Due: Week 4 (Wednesday)

Weighting: 5%

The focus of this test will be on database modeling.

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate understanding of the basic concepts that underlie modern database management systems.

Assignment 1

Due: Week 7

Weighting: 20%

Assignment 1 will focus on logical design and implementation of databases

This Assessment Task relates to the following Learning Outcomes:

- Demonstrate understanding of the basic concepts that underlie modern database management systems.
- Design and develop small, functional database applications using modern database design methods.
- Develop skills in using industrial-strength database tools and interactive development environments for building databases.
- Complete different database programming tasks to specification using SQL.

Test 2

Due: Week 10 (Wednesday)

Weighting: 5%
The focus of this test will be on database programming.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate understanding of the basic concepts that underlie modern database management systems.
• Complete different database programming tasks to specification using SQL.

Assignment 2
Due: Week 11
Weighting: 20%
Assignment 2 will assess certain fundamental aspects of database systems including database programming.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate understanding of the basic concepts that underlie modern database management systems.
• Design and develop small, functional database applications using modern database design methods.
• Develop skills in using industrial-strength database tools and interactive development environments for building databases.
• Complete different database programming tasks to specification using SQL.

Final Examination
Due: TBA
Weighting: 50%
The final examination will assess students' understanding of the fundamental concepts behind database management systems, and their skills in database programming and development.

This Assessment Task relates to the following Learning Outcomes:
• Demonstrate understanding of the basic concepts that underlie modern database management systems.
• Design and develop small, functional database applications using modern database design methods.
• Complete different database programming tasks to specification using SQL.
Delivery and Resources

Classes

Each week you should attend three hours of lectures, a tutorial class and a practical session. For details of days, times and rooms consult the timetables webpage. Students are urged to actively participate in the tutorials; this helps enhancing the understanding by students.

Note that practicals and tutorials commence in week 2. You should have selected a practical session and a tutorial session during enrolment. You should attend the sessions you are enrolled in.

Required and Recommended Texts and/or Materials

Textbook

The textbook listed below cover much of the required material that will be used in preparation of lectures and/or assignments and/or practicals.

For some parts of learning, other necessary material will be made available on the ISYS224 iLearn site.

Unit Webpage and Technology Used and Required

Digital recordings of lectures are available from echo360 at iLearn. Read these instructions for details.

Websites

The web page for this unit can be found at http://ilearn.mq.edu.au

Technology

In this unit you will be exposed to the following technology and tools

- MySQL - Database Management System
- MySQL Workbench - Data Modeling Software Tool

Discussion Boards

The unit will make use of discussion boards hosted within iLearn. Please post questions there, they will be monitored by the staff on the unit regularly.

Unit Schedule
Unit guide ISYS224 Database Systems

<table>
<thead>
<tr>
<th></th>
<th>Introduction to Databases: Relational model</th>
<th>Connolly & Begg, Chapters 1,2,4 + Class Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Database modeling (ER modeling, EER modeling)</td>
<td>Connolly & Begg, Chapters 12-13</td>
</tr>
<tr>
<td>3</td>
<td>Conceptual & Logical Database design</td>
<td>Connolly & Begg, Chapters 16-17</td>
</tr>
<tr>
<td>4-6</td>
<td>Data Manipulation and Database Normalisation</td>
<td>Connolly & Begg, Chapters 6, 14-15</td>
</tr>
<tr>
<td>7</td>
<td>Relational Algebra</td>
<td>Connolly & Begg, Chapter 5</td>
</tr>
<tr>
<td></td>
<td>Recess</td>
<td></td>
</tr>
<tr>
<td>8-9</td>
<td>Database Programming</td>
<td>Connolly & Begg, Chapter 8</td>
</tr>
<tr>
<td>10</td>
<td>Transaction management</td>
<td>Connolly & Begg, Chapter 22</td>
</tr>
<tr>
<td>11</td>
<td>Concurrency control, Recovery</td>
<td>Connolly & Begg, Chapter 22 (and Lecturer provided)</td>
</tr>
<tr>
<td>12</td>
<td>Data Storage and Management</td>
<td>(Lecturer Provided)</td>
</tr>
<tr>
<td>13</td>
<td>Revision</td>
<td>Lecturer Provided</td>
</tr>
</tbody>
</table>

Policies and Procedures

Macquarie University policies and procedures are accessible from [Policy Central](https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central). Students should be aware of the following policies in particular with regard to Learning and Teaching:

- Academic Appeals Policy
- Academic Integrity Policy
- Academic Progression Policy
- Assessment Policy
- Fitness to Practice Procedure
• Grade Appeal Policy
• Complaint Management Procedure for Students and Members of the Public
• Special Consideration Policy (Note: The Special Consideration Policy is effective from 4 December 2017 and replaces the Disruption to Studies Policy.)

Undergraduate students seeking more policy resources can visit the Student Policy Gateway (https://students.mq.edu.au/support/study/student-policy-gateway). It is your one-stop-shop for the key policies you need to know about throughout your undergraduate student journey.

If you would like to see all the policies relevant to Learning and Teaching visit Policy Central (https://staff.mq.edu.au/work/strategy-planning-and-governance/university-policies-and-procedures/policy-central).

Student Code of Conduct

Macquarie University students have a responsibility to be familiar with the Student Code of Conduct: https://students.mq.edu.au/study/getting-started/student-conduct

Results

Results shown in iLearn, or released directly by your Unit Convenor, are not confirmed as they are subject to final approval by the University. Once approved, final results will be sent to your student email address and will be made available in eStudent. For more information visit ask.mq.edu.au.

Student Support

Macquarie University provides a range of support services for students. For details, visit http://students.mq.edu.au/support/

Learning Skills

Learning Skills (mq.edu.au/learningskills) provides academic writing resources and study strategies to improve your marks and take control of your study.

• Workshops
• StudyWise
• Academic Integrity Module for Students
• Ask a Learning Adviser

Student Enquiry Service

For all student enquiries, visit Student Connect at ask.mq.edu.au

Equity Support

Students with a disability are encouraged to contact the Disability Service who can provide appropriate help with any issues that arise during their studies.
Graduate Capabilities

Discipline Specific Knowledge and Skills

Our graduates will take with them the intellectual development, depth and breadth of knowledge, scholarly understanding, and specific subject content in their chosen fields to make them competent and confident in their subject or profession. They will be able to demonstrate, where relevant, professional technical competence and meet professional standards. They will be able to articulate the structure of knowledge of their discipline, be able to adapt discipline-specific knowledge to novel situations, and be able to contribute from their discipline to inter-disciplinary solutions to problems.

This graduate capability is supported by:

Learning outcomes

- Demonstrate understanding of the basic concepts that underlie modern database management systems.
- Design and develop small, functional database applications using modern database design methods.
- Develop skills in using a industrial-strength database tools and interactive development environments for building databases.
- Complete different database programming tasks to specification using SQL.

Assessment tasks

- Test 1
- Assignment 1
- Test 2
- Assignment 2
- Final Examination

Problem Solving and Research Capability

Our graduates should be capable of researching; of analysing, and interpreting and assessing data and information in various forms; of drawing connections across fields of knowledge; and they should be able to relate their knowledge to complex situations at work or in the world, in order to diagnose and solve problems. We want them to have the confidence to take the initiative.
in doing so, within an awareness of their own limitations.

This graduate capability is supported by:

Learning outcomes

- Demonstrate understanding of the basic concepts that underlie modern database management systems.
- Design and develop small, functional database applications using modern database design methods.
- Complete different database programming tasks to specification using SQL.

Assessment tasks

- Test 1
- Assignment 1
- Test 2
- Assignment 2
- Final Examination

Creative and Innovative

Our graduates will also be capable of creative thinking and of creating knowledge. They will be imaginative and open to experience and capable of innovation at work and in the community. We want them to be engaged in applying their critical, creative thinking.

This graduate capability is supported by:

Assessment tasks

- Assignment 2
- Final Examination

Effective Communication

We want to develop in our students the ability to communicate and convey their views in forms effective with different audiences. We want our graduates to take with them the capability to read, listen, question, gather and evaluate information resources in a variety of formats, assess, write clearly, speak effectively, and to use visual communication and communication technologies as appropriate.

This graduate capability is supported by:

Learning outcomes

- Demonstrate understanding of the basic concepts that underlie modern database management systems.
- Design and develop small, functional database applications using modern database
design methods.

Assessment tasks
- Assignment 1
- Assignment 2
- Final Examination

Capable of Professional and Personal Judgement and Initiative
We want our graduates to have emotional intelligence and sound interpersonal skills and to demonstrate discernment and common sense in their professional and personal judgement. They will exercise initiative as needed. They will be capable of risk assessment, and be able to handle ambiguity and complexity, enabling them to be adaptable in diverse and changing environments.

This graduate capability is supported by:

Learning outcomes
- Demonstrate understanding of the basic concepts that underlie modern database management systems.
- Design and develop small, functional database applications using modern database design methods.
- Develop skills in using a industrial-strength database tools and interactive development environments for building databases.
- Complete different database programming tasks to specification using SQL.

Assessment tasks
- Assignment 1
- Assignment 2
- Final Examination

Critical, Analytical and Integrative Thinking
We want our graduates to be capable of reasoning, questioning and analysing, and to integrate and synthesise learning and knowledge from a range of sources and environments; to be able to critique constraints, assumptions and limitations; to be able to think independently and systemically in relation to scholarly activity, in the workplace, and in the world. We want them to have a level of scientific and information technology literacy.

This graduate capability is supported by:

Learning outcomes
- Demonstrate understanding of the basic concepts that underlie modern database management systems.
• Design and develop small, functional database applications using modern database design methods.

Assessment tasks

• Test 1
• Assignment 1
• Test 2
• Assignment 2
• Final Examination

Commitment to Continuous Learning

Our graduates will have enquiring minds and a literate curiosity which will lead them to pursue knowledge for its own sake. They will continue to pursue learning in their careers and as they participate in the world. They will be capable of reflecting on their experiences and relationships with others and the environment, learning from them, and growing - personally, professionally and socially.

This graduate capability is supported by:

Assessment tasks

• Assignment 2
• Final Examination

Changes from Previous Offering

Dr. Peter Busch joins the unit this semester, teaching in the first half. In 2017 there were two online tests administered via iLearn. This time, they will be replaced by in-class tests instead. The content and structure of the unit remains the same.

Changes since First Published

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/07/2018</td>
<td>Text regarding special considerations is slightly modified in line with the</td>
</tr>
<tr>
<td></td>
<td>departmental decision.</td>
</tr>
</tbody>
</table>